含有时滞控制的准零刚度隔振器动力学分析

李东海 赵寿根 何玉金 李涛

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 49-55.

PDF(1526 KB)
PDF(1526 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 49-55.
论文

含有时滞控制的准零刚度隔振器动力学分析

  • 李东海 赵寿根 何玉金 李涛
作者信息 +

Dynamical analysis of a QZS vibration isolator with time-delay control

  • LI Donghai  ZHAO Shougen  He Yujin  LI Tao
Author information +
文章历史 +

摘要

准零刚度隔振器可以通过正负刚度并联来实现。本文研究了一种由三弹簧系统并联而成的准零刚度隔振器在简谐力激励下的动力学特性,并引入线性位移时滞控制策略。通过平均法分析得到系统在简谐力激励下的响应特性,并利用一阶李亚普洛夫近似稳定理论和劳斯-赫尔维茨准则分析了受控系统的稳定性和跳跃现象以及Hopf分叉现象。研究结果表明,时滞控制可以有效地改善准零刚度系统的稳定性,并且能够抑制系统跳跃现象的发生;通过选择合适的控制参数,可以避免系统发生Hopf分叉现象。

Abstract

A quasi zero stiffness (QZS) vibration isolator can be realized through parallel connection of a positive stiffness and a negative one. Here, the dynamic features of a QZS vibration isolator composed of two oblique springs and a vertical spring under the simple harmonic excitation were studied. Introducing the linear displacement time-delay control strategy, the dynamic response characteristics of the system under the simple harmonic excitation were obtained with the averaging method. The first-order Lyapunov approximate stability theory and Routh–Hurwitz criterion were adopted to analyze the stability, jump phenomenon and Hopf bifurcation of the controlled system. The results showed that the time-delay control strategy can effectively improve the stability of the QZS vibration isolator; jump phenomenon and Hopf bifurcation can be avoided through choosing appropriate control parameters.

关键词

准零刚度 / 隔振器 / 时滞控制 / 稳定性 / Hopf分叉

Key words

quasi zero stiffness (QZS) / vibration isolator / time-delay control / stability / Hopf bifurcation

引用本文

导出引用
李东海 赵寿根 何玉金 李涛. 含有时滞控制的准零刚度隔振器动力学分析[J]. 振动与冲击, 2018, 37(13): 49-55
LI Donghai ZHAO Shougen He Yujin LI Tao. Dynamical analysis of a QZS vibration isolator with time-delay control[J]. Journal of Vibration and Shock, 2018, 37(13): 49-55

参考文献

 [1] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012,55(1):22-29.
 [2] Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound & Vibration, 2008,314(3–5):371-452.
 [3] Liu C, Jing X, Daley S, et al. Recent advances in micro-vibration isolation[J]. Mechanical Systems & Signal Processing, 2015,s 56–57(1):55-80.
 [4] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J]. Journal of Sound & Vibration, 2012,332(1):167-183.
 [5] Shaw A D, Neild S A, Wagg D J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts[J]. Journal of Sound & Vibration, 2013,332(6):1437-1455.
 [6] Zhang J Z, Li D, Chen M J, et al. An Ultra-Low Frequency Parallel Connection Nonlinear Isolator for Precision Instruments[J]. Key Engineering Materials, 2004,257-258:231-238.
 [7] 彭献, 黎大志. 准零刚度隔振器及其弹性特性设计[J]. 振动、测试与诊断, 1997(4):44-46.
Peng X, Li D Z. Quasi-zero Stiffness Vibration Isolators and Design forTheir Elastic characteristics[J].Journal of Vibration, Measurement & Diagnosis, 1997(4):44-46 (in Chinese).
 [8] Zhang J Z, Shen D, Dan L I. Study on New Type Vibration Isolation System Based on Combined Positive and Negative Stiffness[J]. Nanoteohnology & Precision Engineering, 2004.
 [9] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009,322(4–5):707-717.
[10] Carrella A, Brennan M J, Waters T P. Optimization of a quasi-zero-stiffness isolator[J]. Journal of Mechanical Science and Technology, 2007,21(6):946-949.
[11] Carrella A. Passive vibration isolators with high-static-low-dynamic-stiffness[D]. VDM Verlag Dr. Müller, 2008.
[12] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007,301(3–5):678-689.
[13] Xu D, Yu Q, Zhou J, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound & Vibration, 2013,332(14):3377-3389.
[14] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-Linear Mechanics, 2008,43(6):462-473.
[15] Brennan M J, Kovacic I, Carrella A, et al. On the jump-up and jump-down frequencies of the Duffing oscillator[J]. Journal of Sound & Vibration, 2008,318(4):1250-1261.
[16] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal oscillator for smooth and discontinuous dynamics.[J]. Physical Review E, 2006,74(4 Pt 2):159-163.
[17] Kovacic I, Brennan M J, Lineton B. On the resonance response of an asymmetric Duffing oscillator[J]. International Journal of Non-Linear Mechanics, 2008,43(9):858-867.
[18] Nbendjo B R N, Salissou Y, Woafo P. Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator[J]. Chaos Solitons & Fractals, 2005,23(3):809-816.
[19] Nbendjo B R N, Tchoukuegno R, Woafo P. Active control with delay of vibration and chaos in a double-well Duffing oscillator[J]. Chaos Solitons & Fractals, 2003,18(2):345-353.
[20] Zhao Y Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[21] Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller[J]. Mechatronics, 2003,13(4):313-329.
[22] Zhao Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[23] 刑誉峰, 李敏. 工程振动基础[M]. 北京航空航天大学出版社, 2011.
Xing Y F, Li M. Foundation of Engineering Vibration[M]. Beijing: Beihang University Press, 2011 (in Chinese).
[24] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York[J]. 1983.
[25] 王高雄. 常微分方程.第3版[M]. 2013.
Wang G X, Ordinary Differential Equation[M]. 3rd ed. Beijing: High Education Press. 2013(in Chinese)
[26] Hu H, Dowell E H, Virgin L N. Resonances of a Harmonically Forced Duffing Oscillator with Time Delay State Feedback[J]. Nonlinear Dynamics, 1998,15(4):311-327.
[27] Wang Y, Li S, Cheng C, et al. Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control[J]. Shock & Vibration, 2015,2015:1-19.
[28] Ho C., Lang Z., Billings S. A., 2014, Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities, Journal of Sound and Vibration Vol.333 pp.2489– 2504.
 

PDF(1526 KB)

Accesses

Citation

Detail

段落导航
相关文章

/