[1] Carrella A, Brennan M J, Waters T P, et al. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness[J]. International Journal of Mechanical Sciences, 2012,55(1):22-29.
[2] Ibrahim R A. Recent advances in nonlinear passive vibration isolators[J]. Journal of Sound & Vibration, 2008,314(3–5):371-452.
[3] Liu C, Jing X, Daley S, et al. Recent advances in micro-vibration isolation[J]. Mechanical Systems & Signal Processing, 2015,s 56–57(1):55-80.
[4] Yang J, Xiong Y P, Xing J T. Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism[J]. Journal of Sound & Vibration, 2012,332(1):167-183.
[5] Shaw A D, Neild S A, Wagg D J. Dynamic analysis of high static low dynamic stiffness vibration isolation mounts[J]. Journal of Sound & Vibration, 2013,332(6):1437-1455.
[6] Zhang J Z, Li D, Chen M J, et al. An Ultra-Low Frequency Parallel Connection Nonlinear Isolator for Precision Instruments[J]. Key Engineering Materials, 2004,257-258:231-238.
[7] 彭献, 黎大志. 准零刚度隔振器及其弹性特性设计[J]. 振动、测试与诊断, 1997(4):44-46.
Peng X, Li D Z. Quasi-zero Stiffness Vibration Isolators and Design forTheir Elastic characteristics[J].Journal of Vibration, Measurement & Diagnosis, 1997(4):44-46 (in Chinese).
[8] Zhang J Z, Shen D, Dan L I. Study on New Type Vibration Isolation System Based on Combined Positive and Negative Stiffness[J]. Nanoteohnology & Precision Engineering, 2004.
[9] Carrella A, Brennan M J, Kovacic I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009,322(4–5):707-717.
[10] Carrella A, Brennan M J, Waters T P. Optimization of a quasi-zero-stiffness isolator[J]. Journal of Mechanical Science and Technology, 2007,21(6):946-949.
[11] Carrella A. Passive vibration isolators with high-static-low-dynamic-stiffness[D]. VDM Verlag Dr. Müller, 2008.
[12] Carrella A, Brennan M J, Waters T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007,301(3–5):678-689.
[13] Xu D, Yu Q, Zhou J, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound & Vibration, 2013,332(14):3377-3389.
[14] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics[J]. International Journal of Non-Linear Mechanics, 2008,43(6):462-473.
[15] Brennan M J, Kovacic I, Carrella A, et al. On the jump-up and jump-down frequencies of the Duffing oscillator[J]. Journal of Sound & Vibration, 2008,318(4):1250-1261.
[16] Cao Q, Wiercigroch M, Pavlovskaia E E, et al. Archetypal oscillator for smooth and discontinuous dynamics.[J]. Physical Review E, 2006,74(4 Pt 2):159-163.
[17] Kovacic I, Brennan M J, Lineton B. On the resonance response of an asymmetric Duffing oscillator[J]. International Journal of Non-Linear Mechanics, 2008,43(9):858-867.
[18] Nbendjo B R N, Salissou Y, Woafo P. Active control with delay of catastrophic motion and horseshoes chaos in a single well Duffing oscillator[J]. Chaos Solitons & Fractals, 2005,23(3):809-816.
[19] Nbendjo B R N, Tchoukuegno R, Woafo P. Active control with delay of vibration and chaos in a double-well Duffing oscillator[J]. Chaos Solitons & Fractals, 2003,18(2):345-353.
[20] Zhao Y Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[21] Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller[J]. Mechatronics, 2003,13(4):313-329.
[22] Zhao Y, Xu J. Effects of delayed feedback control on nonlinear vibration absorber system[J]. Journal of Sound & Vibration, 2007,308(1):212-230.
[23] 刑誉峰, 李敏. 工程振动基础[M]. 北京航空航天大学出版社, 2011.
Xing Y F, Li M. Foundation of Engineering Vibration[M]. Beijing: Beihang University Press, 2011 (in Chinese).
[24] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York[J]. 1983.
[25] 王高雄. 常微分方程.第3版[M]. 2013.
Wang G X, Ordinary Differential Equation[M]. 3rd ed. Beijing: High Education Press. 2013(in Chinese)
[26] Hu H, Dowell E H, Virgin L N. Resonances of a Harmonically Forced Duffing Oscillator with Time Delay State Feedback[J]. Nonlinear Dynamics, 1998,15(4):311-327.
[27] Wang Y, Li S, Cheng C, et al. Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control[J]. Shock & Vibration, 2015,2015:1-19.
[28] Ho C., Lang Z., Billings S. A., 2014, Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities, Journal of Sound and Vibration Vol.333 pp.2489– 2504.