振荡流下柔性立管涡激振动时域响应研究

袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 56-64.

PDF(2561 KB)
PDF(2561 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (13) : 56-64.
论文

振荡流下柔性立管涡激振动时域响应研究

  • 袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2
作者信息 +

Vortex-induced vibration time domain responses of flexible risers under oscillatory flows

  • YUAN Yu-chao1,2, XUE Hong-xiang1,2, TANG Wen-yong1,2
Author information +
文章历史 +

摘要

本文引入受迫振动试验所得流体力系数库,采用全新的锁定判定区间及锁定准则,针对柔性立管振荡流条件下涡激振动问题提出了一套可供选择的时域预报数值方法。涡激振动流体力由瞬时来流速度及立管截面运动共同决定,相关流体力系数为无因次幅值及频率的函数。基于上述方法对某4m立管模型不同KC数及最大约化速度的振荡流工况进行模拟,预报结果与相应试验实测吻合较好,并捕捉到振幅调制、迟滞、频率转换及高频谐振等现象。进而,对于不同KC数及最大约化速度组合的振荡流工况下立管动力响应表现出的诸多有别于定常流条件的特性,从涡激振动发生机理层面进行分析讨论并给出合理解释。最后,通过对振荡流与均匀流下立管涡激振动响应进行对比发现,在流速相当的条件下,振荡流工况的涡激振动均方根位移大于对应均匀流工况的对应值;而当最大约化速度相同时,较小的KC数对应较大的涡激振动均方根位移。

Abstract

Introducing the hydrodynamic force coefficient database obtained with forced vibration tests and adopting the full-new judgement for lock-in region and the lock-in criterion, aiming at vortex-induced vibration (VIV) problems of flexible risers under oscillatory flows, a set of time domain predicting numerical methods for users to choose was proposed. VIV hydrodynamic forces were depended on instantaneous incoming flow velocity and motion of riser’s cross-section. The corresponding hydrodynamic force coefficients were functions of non-dimensional amplitude and frequency. Based on the proposed methods, the dynamic response of a certain 4m high riser model under oscillatory flows with different KC numbers and maximum reduced velocities was calculated. The prediction results agreed well with those of tests. Amplitude modulation, hysteresis, frequency transition and higher frequency resonances, etc. phenomena were observed in the predicted results. These features of the dynamic response of the riser under combined oscillatory flow cases with different KC numbers and maximum reduced velocities were distinguished from those under steady flow cases. They were analyzed from the view point of VIV occurrence mechanism and explained reasonably. Finally, comparing VIV responses of the riser under oscillatory flows with those under uniform flows, it was shown that under the similar flow velocity, the RMS of riser’s VIV displacement under oscillatory flows is larger than that under uniform flows; under the same maximum reduced velocity, the smaller KC number corresponds to a larger RMS of riser’s VIV displacement.

关键词

涡激振荡 / 柔性立管 / 振荡流 / 数值模拟 / 时域

引用本文

导出引用
袁昱超1,2, 薛鸿祥1,2, 唐文勇1,2. 振荡流下柔性立管涡激振动时域响应研究[J]. 振动与冲击, 2018, 37(13): 56-64
YUAN Yu-chao1,2, XUE Hong-xiang1,2, TANG Wen-yong1,2. Vortex-induced vibration time domain responses of flexible risers under oscillatory flows[J]. Journal of Vibration and Shock, 2018, 37(13): 56-64

参考文献

[1] Vandiver J.K., Li L., SHEAR7 V4.4 Program Theoretical Manual [P], Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 2005.
[2] Larsen C.M., Lie H., Passano E., Yttervik R., Wu J., Baarholm G., VIVANA Theory Manual (Version3.7) [P], Norwegian Marine Technology Research Institute, Trondheim, Norway, 2009.
[3] Chang S.H., Isherwood M., Vortex-induced vibrations of steel catenary risers and steel offloading lines due to platform heave motions [C]. Proceedings of the Offshore Technology Conference. Houston, Texas, USA, 2003.
[4] Sidarta D.E., Finn L.D., Maher J., Time domain FEA for riser VIV analysis[C]. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China, 2010, paper No.OMAE2010-20688.
[5] Ma P., Qiu W., Time-domain VIV prediction of marine risers [C]. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil, 2012, OMAE2012-84269.
[6] Xue H.X., Wang K.P., Tang W.Y., A practical approach to predicting cross-flow and in-line VIV response for deepwater risers[J]. Applied Ocean Research, 2015, 52: 92-101.
[7] Liao J.C., Vortex-induced vibration of slender structures in unsteady flow [D]. Doctoral thesis, Massachusetts Institute of Technology, 2001.
[8] Resvanis T.L., Vortex-induced vibration of flexible cylinders in time-varying flows [D]. Doctoral thesis, Massachusetts Institute of Technology., 2014.
[9] Thorsen M.J., Sævik S., Larsen C.M., Time domain simulation of vortex-induced vibrations in stationary and oscillating flows [J]. Journal of Fluids and Structures, 2016, 61:1-19.
[10] Gopalkrishnan R., Vortex induced forces on oscillating bluff cylinders [D]. Doctoral thesis, Massachusetts Institute of Technology, 1993.
[11] Fu S.X., Wang J.G., Baarholm R., Wu J., Larsen C.M., Features of vortex-induced vibration in oscillatory flow [J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(1): 011801.
[12] 王俊高, 付世晓, 许玉旺, 宋磊建. 振荡来流下柔性立管涡激振动“分时特性”试验研究[J]. 振动与冲击, 2014, 33(21):1-7.
Wang J.G., Fu S.X., Xu Y.W., Song L.J. Tests for “time sharing” of vortex-induced vibration of a flexible cylinder in oscillatory flow [J]. Journal of Vibration and Shock, 2014, 33(21):1-7.
[13] Venugopal M., Damping and response of a flexible cylinder in a current [D]. Doctoral thesis, Massachusetts Institute of Technology, 1996.
[14] Zheng H.N., The influence of high harmonic force on fatigue life and its prediction via coupled Inline-Crossflow VIV modeling [D]. Doctoral thesis, Massachusetts Institute of Technology, 2014.
[15] Blevins R.D., Coughran C.S., Experimental Investigation of Vortex-induced Vibration in One and Two Dimensions with Variables Mass, Damping and Reynolds Number [J]. Journal of Fluids Engineering, 2009, 131(10), paper No. 101202.
[16] 戚兴. 隔水管流固耦合涡激振动数值模拟研究[D]. 硕士论文, 西南石油大学, 成都, 2014.
Qi X. Numerical simulation of fluid-structure interaction of vortex-induced vibration for marine risers [D]. Master's thesis, Southwest Petroleum University, Chengdu, 2014.
[17] 董婧, 宗智, 李章锐, 孙雷, 陈伟. 两自由度运动圆柱绕流的离散涡方法模拟[J]. 船舶力学, 2012, 16(1):9-20.
Dong J., Zong Z., Li Z.R., Sun L., Chen W. Numerical simulation of flow around a cylinder of two degrees of freedom motion using the discrete vortex method [J]. Journal of Ship Mechanics, 2012, 16(1):9-20.
[18] 曹淑刚, 黄维平, 顾恩凯. 考虑流固耦合的弹性圆柱体涡激振动研究[J]. 振动与冲击, 2015, 34(1):58-62.
Cao S.G., Huang W.P., Gu E.K. Vortex-induced vibration of an elastic cylinder considering fluid-structure interaction [J]. Journal of Vibration and Shock, 2015, 34(1):58-62.

PDF(2561 KB)

Accesses

Citation

Detail

段落导航
相关文章

/