江阴大桥船撞期间实测数据时间同步分析

王伟东 1,姜绍飞 1,周华飞 2,韩悦 2,杨蜜 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 10-21.

PDF(4164 KB)
PDF(4164 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 10-21.
论文

江阴大桥船撞期间实测数据时间同步分析

  • 王伟东 1,姜绍飞 1,周华飞 2,韩悦 2,杨蜜 2
作者信息 +

Time synchronization for monitoring data of the Jiangyin Bridge subjected to a ship collision

  • WANG Weidong1,  JIANG Shaofei1,  ZHOU Huafei2,  HAN Yue2,  YANG Mi2
Author information +
文章历史 +

摘要

为了解决江阴大桥船撞期间实测数据的时间不同步问题,提出了采用状态空间模型方法识别不同位置处加速度间的时间延迟。首先,任意选择其中一个加速度作为参考信号,而其余加速度作为时间平移信号,相对参考信号进行时间平移。然后,以一个参考信号和一个时间平移信号作为输出变量,针对每个平移时刻,分别建立相应的状态空间模型。模型参数由随机子空间识别方法计算得到,模型阶次由AIC (Akaike’s information criterion)和FPE (Final prediction error)估计得到。由于模型拟合数据的时间不同步将导致所建模型的损失函数增大,因此,可将损失函数达到最小值时所对应的平移时间作为加速度数据的实际时间延迟。此外,利用江阴大桥船撞前两小时的异步加速度数据及船撞后的同步加速度数据,分别对状态空间模型方法的可重复识别能力及抗伪识别能力进行了检验。结果表明,无论是异步数据还是同步数据,状态空间模型均能较准确地识别时间延迟。

Abstract

To address the asynchronicity issue of the multiple sensor data of the Jiangyin Bridge measured during a shipbridge collision, a statespace (SS) model was proposed to identify the time lag between the asynchronous accelerations at different locations of the bridge. First, one of the accelerations was randomly chosen as a reference signal, and the time axes of the rest of them (termed as time shifted signals) were individually shifted relatives to that of the reference signal with a series of time instant. Then, the SS model with two output variables, i.e., one reference signal and one time shifted signal, was formulated in correspondence with each time instant. The system matrices were computed by a datadriven stochastic subspace identification algorithm and the model order was estimated by the Akaike’s information theoretic criterion (AIC) and final prediction error (FPE). If the two accelerations for model fitting are asynchronous, errors may be introduced into the formulated SS model and its loss function is expected to be greater than the counterpart obtained with synchronous accelerations. Therefore, the actual time lag between them can be identified from the time instant that corresponds to the minimum of loss function. To evaluate the reproducibility of the SS model for time synchronization, asynchronous acceleration data measured two hours ahead of the shipbridge collision were analyzed as well. In addition, the synchronous acceleration data measured long after the shipbridge collision were utilized to examine its antifalseidentification capability. The results show that the SS model achieves a satisfactory performance in the identification of the time lag for both asynchronous and synchronous measurement data.

关键词

时间同步 / 状态空间模型 / 船撞 / 结构健康监测 / 加速度

Key words

time synchronization / state-space model / ship collision / structural health monitoring / acceleration

引用本文

导出引用
王伟东 1,姜绍飞 1,周华飞 2,韩悦 2,杨蜜 2. 江阴大桥船撞期间实测数据时间同步分析[J]. 振动与冲击, 2018, 37(14): 10-21
WANG Weidong1, JIANG Shaofei1, ZHOU Huafei2, HAN Yue2, YANG Mi2. Time synchronization for monitoring data of the Jiangyin Bridge subjected to a ship collision[J]. Journal of Vibration and Shock, 2018, 37(14): 10-21

参考文献

[1] ZHOU Hua-fei, Ni Yi-qing, GAO Zan-ming. Structural health monitoring of the Jiangyin bridge: System Upgrade and Data Analysis [J]. Smart Structures and Systems, 2013, 11 (6): 637-662.
[2] 朱绍玮,张宇峰,樊可清,等. 江阴大桥结构健康监测系统升级改造及初步数据分析[J]. 公路,2007, 2007(04):69-73.
ZHU Shao-wei, ZHANG Yu-feng, FAN Ke-qing, et al. Upgraded reconstruction and primary data analysis of structure health monitoring system of Jiangyin bridge[J]. Highway, 2007, 2007(04): 69-73.
[3] Krishnamurthy V, Fowler K, Sazonov E. The Effect of time synchronization of wireless sensors on the modal analysis of structures[J]. Smart Materials & Structures, 2008, 17 (5): 55018-13.
[4] FENG Zhong-quan, Katafygiotis L S. A method for correcting synchronization errors in wireless sensors for structural modal identification[J]. Procedia Engineering, 2011, 14 (3): 498-505.
[5] FENG Zhong-quan, Katafygiotis L S. The effect of non-synchronous sensing on structural identification and its correction[J]. Smart Structures and Systems, 2016, 18(3): 541-568.
[6] Nguyen T, Chan T H T, Thambiratnam D P. Effects of wireless sensor network uncertainties on output-only modal-based damage identification[J]. Australian Journal of Structural Engineering, 2014, 15 (1): 15-25
[7] 林晓鹏.无线传感器网络时间同步技术分析[J].智能计算机与应用,2016,6 (2):17-19.
LIN Xiao-peng. The analyzing of time synchronization technique for wireless sensor networks[J]. Intelligent Computer and Applications, 2016, 6 (2): 17-19.
[8] 姜帆,郑霖. 无线传感器网络TPSN-RBS联合时间同步算法[J]. 传感器与微系统, 2016,35 (1):149-152.
JIANG Fan, ZHEN Lin.YPSN-RBS joint time synchronization algoruthm for wireless sensor networks[J]. Transducer and Microsystem Technologies, 2016, 35 (1): 149-152.
[9] Elson J, Girod L, Estrin D. Fine-grained network time synchronization using reference broadcasts[J]. ACM Sigops Operating Systems Review, 2002, 36(SI): 147-163.
[10] Ganeriwal S, Kumar R, Srivastava M B. Timing-sync protocol for sensor networks [C]// Internation Conference on Embedded Networked Sensor Systems. New York: ACM, 2003: 138-149.
[11] Marotiii M, Kusy B, Simon G, et al. The flooding time synchronization protocol [C]//International Conference On Embedded Networked Sensor Systems (SenSys’04). Baltimore: ACM, 2004: 39-49.
[12] Nagayama T, Spencer B F, Rice J A. Structural health monitoring using smart sensors[C]// the world forum on smart materials and smart structures technology. 2008:693202-693202-14.
[13] LEI Ying, Kiremidjian* A S, NairK K, et al. Algorithms for time synchronization of wireless structural monitoring sensors[J]. Earthquake Engineering and Structural Dynamics. 2005, 34(6): 555-573.
[14] SafakE. Identification of linear structures using discrete-time filters[J]. Journal of Structural Engineering, 1991, 117 (10): 3064-3085.
[15] 杨叔子,吴雅,轩建平,等. 时间序列分析的工程应用[M].2版.武汉:华中科技大学出版,2007.
YANG Shu-zi, WU Ya, XUAN Jian-ping, et al. The engineering application of time series analysis[M]. 2th ed. Wuhan: Hua  zhong University of Science and Technology Press, 2007.
[16] Lynch J P, WANG Yang, Loh K J, et al. Performance monitoring of the geumdang bridge using a dense network of high-resolution wireless sensors[J]. Smart Materials & Structures, 2006, 15(6): 9-55.
[17] SHEN Wen-ai, LEI Ying, HU Liang, et al. Feasibility of output-only modal identification using wireless sensor network: A Quantitative Field Experimental Study[J]. International Journal of Distributed Sensor Networks, 2012, 2012 (5-6): 78-193.
[18] Casals J, Garcia-Hiernaux A, Jerez M, et al. State-space methods for time series analysis: Theory, Applications and Software[M]. Boca Raton, USA:CRC Press, 2016.
[19] Brockwell P J, Davis R A. 时间序列的理论与方法[M]. 2版. 北京:世界图书北京出版公司, 2015.   
Brockwell P J, DAVIS R A. Time series theory and methods[M]. 2th ed. Beijing: World Book Beijing Publishing Company, 2015.
[20] 李嗣福.  线性离散时间系统的预测状态空间表达式[J].  中国科学技术大学学报. 1994, 1994(1): 22-28.
LI Si-fu.Predictive State space expression for linear discrete time systems[J]. Journal of University of Science & Technology China. 1994, 1994(1): 22-28.
[21] 魏武雄.时间序列分析--单变量和多变量方法[M].  2版.  北京:中国人民大学出版社,2009.
WEI Wu-xiong, Time series ansysis—univariate and multivariate methods. 2th ed. Beijing: Renmin University of China Press, 2009.
[22] Lardies J. Modal parameter identification based on ARMAV and state-space approaches[J]. Archive of Applied Mechanics. 2010, 80 (4): 335-352.
[23] Bodeux J B, Golinval J C. Application of ARMAV models to the identification and damage detection mechanical and civil engineering structures[J]. Smart Materials and Structures. 2001, 10 (20): 479-489.
[24] Van O P, De M B. N4SID: subspace algorithms for the identification of combined deterministic-stochastic systems[J]. Automatica, 1992, 30(1): 75-93.
[25] Peeters B, Roeck G D. Reference-based stochastic subspace identification for output-only modal analysis[J]. Mechanical Systems & Signal Processing, 1999, 13(6): 855-878.
[26] 辛峻峰, 王树青, 刘福顺. 数据驱动与协方差驱动随机子空间法差异化分析[J]. 振动与冲击, 2013, 32(9): 1-4.
XIN Jun-feng, WANG Shu-qing, LIU Fu-shun. Performance comparison for data-driven and covariance-driven stochastic subspace identification method[J]. Journal of vibration and shock, 2013, 32(9): 1-4.
[27] 章国稳, 汤宝平, 孟利波. 基于特征值分解的随机子空间算法研究[J]. 振动与冲击, 2012, 31(7):74-78.
ZHANG Guo-wen, TANG Bao-ping, MENG Li-bo. Improved stochastic subspace identification algorithm based on eigendecomposition[J]. Journal of vibration and shock, 2012, 31(7): 74-78.
[28] Stoffer D S, Wall K D. Bootstrapping State-Space Models: Gaussian Maximum Likelihood Estimation and the Kalman Filter[J]. Journal of the American Statistical Association, 1991, 86(416): 1024-1033.
[29] Cavanaugh J E, Shumway R H. A Bootstrap Variant of AIC for State-Space Model Selection[J]. Statistica Sinica, 1998, 7(2): 473-496.
[30] Holmes E E, Ward E J, Wills K. MARSS: Multivariate Autoregressive State-space Models for Analyzing Time-series Data[J]. R Journal, 2012, 4(1): 11-19.
[31] Akaike H. Fitting autoregressive models for prediction[J]. Annals of the Institute of Statistical Mathematics, 1969, 21(1): 243-247.

PDF(4164 KB)

473

Accesses

0

Citation

Detail

段落导航
相关文章

/