芯体截面梯度变化的点阵夹层结构吸能特性研究

朱凌雪1,朱晓磊2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 115-121.

PDF(1236 KB)
PDF(1236 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 115-121.
论文

芯体截面梯度变化的点阵夹层结构吸能特性研究

  • 朱凌雪1,朱晓磊2
作者信息 +

Energy absorption characteristics of lattice truss structureswith graded cross section core member

  • ZHU Lingxue1,ZHU Xiaolei2
Author information +
文章历史 +

摘要

本文应用有限元分析方法,对芯杆直径沿点阵夹层结构厚度方向梯度变化的点阵夹层结构平压性能进行了分析,并将计算结果与传统点阵夹层结构进行了对比。结果表明:通过比较极限承载力计算模型和有限元分析结果其最大误差为8.9%,芯体截面梯度变化的点阵夹层结构极限承载力小于传统点阵夹层结构。芯体截面梯度变化的点阵夹层结构面比吸能和圧溃载荷率要优于传统点阵夹层结构,且当梯度化系数为0.05时,芯体截面梯度变化的点阵夹层结构面比吸能和圧溃载荷率达到最大值。

Abstract

The finite element method was utilized to analyse the compression properties of lattice truss structureswith graded crosssection core member (LTSGCC). Taking a certain lattice core sandwich as an example, the diameter of its core member is gradientvarying along the thickness. The calculation results were compared with those of the traditional lattice core sandwich (TLS). A prediction model was also used to calculate the first peak value of the LTSGCC, the maximum error is 8.9%, when comparing with the FEM results. The first peak value of the LTSGCC is smaller than that of the TLS. Meanwhile, the specific energy absorption (SEA) of the LTSGCC is larger than that of the TLS, and reaches the maximum, when the gradient coefficient is 0.05.

关键词

芯体截面梯度变化点阵夹层结构 / 点阵夹层结构 / 吸能特性 / 压缩载荷

Key words

 lattice truss structures with graded cross-section of core member / lattice truss / energy absorption / compressive loading

引用本文

导出引用
朱凌雪1,朱晓磊2 . 芯体截面梯度变化的点阵夹层结构吸能特性研究[J]. 振动与冲击, 2018, 37(14): 115-121
ZHU Lingxue1,ZHU Xiaolei2. Energy absorption characteristics of lattice truss structureswith graded cross section core member[J]. Journal of Vibration and Shock, 2018, 37(14): 115-121

参考文献

[1] Yamanouchi M, Koizumi M, Hirai T, et al. Proceedings of first international symposium on functionally gradient materials [C], Sendai, Japan, 1990.
[2] Koizumi M. Functionally gradient materials the concept of FGM [J]. Ceram Trans, 1993, 34:3-10.
[3] Cui L, Kiernan S, Gilchrist M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science & Engineering A, 2009, 507:215-225.
[4] Brothers A H, Dunand D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering: A, 2008, 489:439-443.
[5] Zhang X, Zhang H. Optimal design of functionally graded foam material under impact loading [J]. International Journal of Mechanical Sciences, 2013, 68:199-211.
[6] 张健,赵桂平,卢天健. 梯度泡沫金属的冲击吸能特性[J]. 工程力学, 2016, 33(8): 211-220.
Zhang Jian, Zhao Gui-ping, Lu Tian-jian. Energy absorption behavior of density-graded metallic foam under impact loading [J]. Engineering Mechanics, 2016, 33(8):211-220.
[7] Xia W, Wu C Q, Liu Z X, et al., Protective effect of graded density aluminum foam on RC slab under blast loading: An experimental study [J]. Construction and Building Materials, 2016, 111:209-222.
[8] Lee B K, Kang K.J. A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores [J]. Composites Structural, 2010, 92:445-453.
[9] Li F M, Song Z G, Sun C C. Aeroelastic properties of sandwich beam with pyramidal lattice core considering geometric nonlinearity in the supersonic airflow [J]. Acta Mechanica Solida Sinica, 2015, 28(6):639-646.
[10] Zhang Q C, Lu T J. Experimental and simulated compressive properties of work-hardened X-type lattice truss structures [J]. Acta Mechanica Solida Sinica, 2012, 25(2):111-116.
[11] Zheng J, Zhao L, Fan H. Energy absorption mechanisms of hierarchical woven lattice composites [J]. Composites Part B Engineering, 2012, 43:1516-1522.
[12] Fan H, Qu Z, Xia Z, et al. Designing and compression behaviors of ductile hierarchical pyramidal lattice composites [J]. Materials & Design, 2014, 58:363-367.
[13] 张钱城,卢天健,闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2): 157-169.
Zhang Qian-cheng, Lu Tian-jian, Wen Ting. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials [J]. Advances in Mechanics, 2010, 40(2): 157-169.
[14] 张钱城,韩云杰,卢天健. 超轻X型点阵芯体金属夹层板的剪切疲劳机制[J]. 西安交通大学学报, 2010, 44(11): 61-65.
Zhang Qian-cheng, Han Yun-jie, Lu Tiani-jian. Shear fatigue mechanisms of ultralightweight X-type lattice truss cored metallic sandwich panels [J]. Journal of Xi’an Jiaotong Yniversity, 2010, 44(11): 61-65.
[15] 张钱城,韩云杰,陈常青,卢天健. X型超轻点阵结构芯体(I):概念的提出、材料制备及实验[J]. 中国科学(E辑:技术科学), 2009, 39(6): 1039-1046.
Zhang Qian-cheng, Han Yun-jie,Chen Chang-qing, Lu Tiani-jian. X-type lattice truss cored metallic sandwich panels(I): Definition,  Preparation process and Experiment [J]. Science in China, 2009, 39(6): 1039-1046.
[16] 张钱城,陈爱萍,陈常青,卢天健. X型超轻点阵结构芯体(Ⅱ):细观力学建模与结构分析[J]. 中国科学(E辑:技术科学), 2009, 39(7): 1216-1227.
Zhang Qian-cheng, Han Yun-jie,Chen Chang-qing, Lu Tiani-jian. X-type lattice truss cored metallic sandwich panels(Ⅱ): Mechanics modeling and analysis [J]. Science in China, 2009, 39(7): 1216-1227.
[17] 郭锐, 南博华, 周昊, 刘荣忠, 朱荣, 姜炜. 点阵金属夹层结构抗侵彻实验研究[J]. 振动与冲击, 2016,35(4):45-50.
Guo Rui, Nan Bo-hua, Zhou Hao, Liu Rong-zhong, Zhu Rong, Jiang Wei. Experiment assessment of the ballistic response of a hybrid-cored sandwich structure [J]. Journal of Vibration and Shock, 2016,35(4):45-50.
[18] 任树伟,孟晗,辛锋先,卢天健, 慈军, 耿丽. 方形蜂窝夹层曲板的振动特性研究[J]. 西安交通大学学报, 2015, 49(3): 129-135.
Ren Shu-wei, Meng Han, Xin Feng-xian, Lu Tian-jian, Ci Jun, Geng Li. Vibration analysis of simply supported curved sandwich panels with square honeycomb cores [J]. Journal of Xi’an Jiaotong Yniversity, 2015, 49(3): 129-135.
[19]  韩宾,文灿,于渤,倪长也, 秦科科, 张钱城, 卢天健, 慈军, 耿丽. 泡沫填充波纹夹芯梁的面内压缩破坏模式分析[J]. 西安交通大学学报, 2014, 48(11): 37-43.
Han Bin, Wen Can, Yu Bo, Ni Chang-ye, Qin Ke-ke, Zhang Qian-cheng, Lu Tian-jian, Ci Jun, Geng, Li. Collapse mechanism analysis of foam-filled corrugated sandwich beams under in-plane compression [J]. Journal of Xi’an Jiaotong Yniversity, 2014, 48(11): 37-43.
[20] 寇玉亮,陈常青,卢天健. 泡沫铝率相关本构模型及其在三明治夹芯板冲击吸能特性的应用研究. 固体力学学报, 2011, 32(3): 217-227.
Kou Yu-liang, Chen Chang-qing,Lu Tian-jian. A rate-dependent constitutive model for aluminum foams and its application to the energy absorption of lightweight sandwich panels with aluminum foam cores [J]. Chinese Journal of Solid Mechanics, 2011, 32(3): 217-227.
[21]  倪长也,金峰,卢天健,李裕春. 3种点阵金属三明治板的抗侵彻性能模拟分析[J]. 力学学报, 2010, 42(6): 1125-1137.
Ni Chang-ye, Jin Feng, Lu Tian-jian, Li Yu-chun. Penetration and perforation performance of three pyramidal lattice-cored sandwich plates: numerical simulations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1125-1137.
[22] Han Bin, Zhang Zhi-jia, Zhang Qian-Cheng, Zhang Qi, Lu Tian-jian. Recent advances in hybrid lattice-cored sandwiches for enhanced multifunctional performance [J]. Extreme Mechanics Letters. 2017, 10: 58-69.
[23] Han Bin, Qin Ke-ke, Yu Bo, Wang Bo, Zhang Qian-Cheng, Lu Tian-jian. Honeycomb–corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance [J] . Materias & Design, 2016, 93: 271-282.
[24] Ullah I, Brandt M, Feih S. Failure and energy absorption characteristics of advanced 3D truss core structures [J]. Materials & Design, 2016, 92:937-948.
[25] Xu G D, Zhai J J, Zeng T, et al. Response of composite sandwich beams with graded lattice core [J]. Composite Structures, 2015, 119:666-676.
[26] Yu, Bo, Han Bin, Su Peng-bo, Ni Chang-ye, Zhang Qian-cheng, Lu Tian-jian. Graded square honeycomb as sandwich core for enhanced mechanical performance [J]. Materials & Design, 2016, 89: 642-652.
[27] Cui X D, Zhao L M, Wang Z H, et al. A lattice deformation based model of metallic lattice sandwich plates subjected to impulsive loading [J]. International Journal of Solids & Structures, 2012, 49:2854-2862.
[28] Hooputra H, Gese H, Dell H, et al. A comprehensive failure model for crashworthiness simulation of aluminum extrusions [J]. International Journal of Crashworthiness, 2004, 9:449–463.
[29] Keeler S P, Backofen W A. Plastic instability and fracture in sheets stretched over rigid punches [J]. ASM Transactions Quarterly, 1964, 56:25-48.
[30] Marciniak Z, Kuczynski K. Limit strains in processes of stretch-forming sheet metal [J]. International Journal of Mechanical Sciences, 1967, 9:609-620.
[31] Müschenborn W, Sonne H. Influence of the strain path on the forming limits of sheet metal [J]. Archiv für das Eisenhüttenwesen, 1975, 46:597–602.
[32] Stoughton T B. A general forming limit criterion for sheet metal forming [J]. International Journal of Mechanical Sciences, 2000, 42:1–27.
[33] Zok F W, Waltner S A, Wei Z, et al. A protocol of for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores [J]. International of Journal of Solids and Structures, 2004, 41:6249-6271.

PDF(1236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/