基于随机子空间方法的悬臂结构损伤识别研究

唐盛华1,方 志2,张国刚3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 141-148.

PDF(1758 KB)
PDF(1758 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 141-148.
论文

基于随机子空间方法的悬臂结构损伤识别研究

  • 唐盛华1,方 志2,张国刚3
作者信息 +

Damage identification of cantilever structures based on stochastic subspace method

  •  TANG Shenghua1,FANG Zhi2,  ZHANG Guogang3
Author information +
文章历史 +

摘要

为使用随机子空间方法对悬臂结构进行损伤判断和定位,对振动测量信号,利用数据驱动随机子空间识别方法得到随机状态空间模型,通过变换矩阵T、T1将离散状态空间矩阵A转化为特定形式,克服A矩阵的多样性问题。T矩阵采用A矩阵特征值分解后的特征向量矩阵构造,变换后的A矩阵用于判断结构是否存在损伤及相对损伤程度。T1矩阵采用A矩阵和离散输出矩阵C构造,变换后的A矩阵包含测点信息,用于结构损伤定位。损伤指标采用统计方法确定,由损伤前后样本马氏距离计算得到。通过一三自由度悬臂结构仿真算例和一座模型斜拉桥桥塔损伤试验,验证了该方法的有效性。

Abstract

In order to judge and locate the damage of cantilever structures by using the stochastic subspace identification (SSI) method, a datadriven SSI algorithm was proposed to identify the state matrix of vibration measurement signals. In order to consider the variousness of the state matrix A, two transformation matrixes T and T1 were built, so that the matrix A in different states could be converted to a specific state by using matrix T or T1. The matrix T was constructed by the feature vector matrix of eigenvalue decomposition of matrix A. The transformed matrix A was used to judge whether the structure was damaged or not and how the relative damage degree was. The matrix T1 was constructed by utilizing the matrix A and discrete output matrix C. The transformed matrix A contains measuring point informations, which can be used for structural damage localization. The damage index was determined by the statistical method, which was calculated according to the Mahalanobis distance of specimens before and after damage. The efficiency of the method was verified by a simulated cantilever structure with three degrees of freedom and the tower damage experiment of a model cablestayed bridge.

关键词

随机子空间 / 损伤 / 状态空间模型 / 悬臂结构

Key words

stochastic subspace / damage / state space model / cantilever structure

引用本文

导出引用
唐盛华1,方 志2,张国刚3. 基于随机子空间方法的悬臂结构损伤识别研究[J]. 振动与冲击, 2018, 37(14): 141-148
TANG Shenghua1,FANG Zhi2, ZHANG Guogang3. Damage identification of cantilever structures based on stochastic subspace method[J]. Journal of Vibration and Shock, 2018, 37(14): 141-148

参考文献

[1] Overschee P V, Moor B D. Subspace Identification for Linear Systems: Theory Implementation and Applications [M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1996.
[2] 徐良, 江见鲸, 过静珺. 随机子空间识别在悬索桥实验模态分析中的应用[J]. 工程力学, 2002, 19(4): 46-49.
Xu Liang, Jiang Jianjing, Guo Jingjun. Application of stochastic subspace method to experimental modal analysis of suspend- sion bridges [J]. Engineering Mechanics, 2002, 19(4): 46-49.
[3] 常军, 张启伟, 孙利民. 随机子空间产生虚假模态及模态遗漏的原因分析[J]. 工程力学, 2007, 24(11): 57-62.
Chang Jun, Zhang Qiwei, Sun Limin. Analysis how stochastic subspace identification brings false modes and mode absence [J]. Engineering Mechanics, 2007, 24(11): 57-62.
[4] Peter C E, Akira M. Challenges in developing confidence intervals on modal parameters estimated for large civil infrastructure with stochastic subspace identification [J]. Structural Control and Health Monitoring, 2011, 18(1): 53-78.
[5] Liu Y C, Loh C H, Ni Y Q. Stochastic subspace identi- fication for output-only modal analysis: application to super high-rise tower under abnormal loading condition[J], Earthquake Engineering & Structural Dynamics, 2013, 42(1): 477-498.
[6] 高延安, 杨庆山, 王娟,等. 环境激励下古建筑飞云楼动力性能分析[J]. 振动与冲击, 2015, 34(22): 144-148+182.
Gao Yan-an, Yang Qingshan, Wang Juan, et al. Dynamic perfor- mance of the ancient architecture of Feiyun pavilion under the condition of environmental excitation [J]. Journal of Vibration and Shock, 2015, 34(22): 144-148+182.
[7] 程永欢, 陈彦江, 李勇, 等. 基于环境激励的连续刚构桥模态参数识别及有限元模型修正[J]. 工业建筑, 2014, S1: 331- 336.
Chen Yanjiang, Cheng Yonghuan, Li Yong, et al. Operational model identification and fe model updating of a continuous rigid frame bridge based on ambient excitation [J]. Industrial construction, 2014, S1: 331- 336.
[8] 陈太聪, 李盈盈, 苏成,等. 环境激励下结构模态辨识的识别概率直方图方法研究[J]. 振动工程学报, 2016, 29(4): 561-567.
Cheng Taicong, Li Yingying, Su Cheng, et al. A study on identification probability histogram method for modal identi- fication of structures subjected to ambient excitations [J]. Journal of Vibration Engineering, 2016, 29(4): 561-567.
[9] 陈永高, 钟振宇. 基于CEEMD分解和Data-SSI算法的斜拉桥模态参数识别[J]. 振动与冲击, 2016, 35(08): 166-172+ 200.
Chen Yonggao, Zhong Zhenyu. Modal parameter identi- fication of a cable-stayed bridge based on CEEMD and DATA-SSI algorithm [J]. Journal of Vibration and Shock, 2016, 35(08): 166-172+200.
[10] Basseville M, Abdelghani M, Benveniste1 A. Subspace-based fault detection algorithms for vibration monitoring [J]. Auto- matica, 2000, 36(3): 101-109.
[11] Yan A M, Boe P D and Golinval J C. Structural Damage Diagnosis by Kalman Model Based on Stochastic Subspace Identification [J]. Structural Health Monitoring, 2004, 3(2): 103-119.
[12] Yan A M and Golinval J C. Null subspace-based damage detection of structures using vibration measurements [J]. Mechanical Systems and Signal Processing, 2006, 20(3): 611- 626.
[13] 林友勤. 基于随机状态空间模型的结构损伤识别方法研究[D]. 福州: 福州大学, 2007, 29-102.
Lin Youqin. Stochastic state space model-based to the damage identification of civil engineering structures [D]. Fuzhou: Fu- zhou University, 2007, 29-102.
[14] 林友勤, 任伟新. 基于随机状态空间模型的工程结构损伤检测[J]. 振动工程学报, 2007, 20(6): 599-604.
Lin Youqin, Ren Weixin. Damage detection of engineering structures based on stochastic state space model [J]. Journal of Vibration Engineering, 2007, 20(6): 599-604.
[15] Kim J, Lynch J P. Subspace system identification of support excited structures—part II: gray-box interpretations and damage detection [J]. Earthquake Engineering & Structural Dynamics, 2012, 41(1): 2253-2271.
[16] Ser T Q, Wang W P, Chan G K. System identification of linear MDOF structures under ambient excitation [J]. Earth- quake Engineering & Structural Dynamics, 1999, 28(1): 61- 77.
[17] Hung C F, Ko W J, Tai C H. Identification of dynamic systems from data composed by combination of their response components [J]. Engineering Structures, 2002, 24 (11): 1441- 1450.
[18] 方志,唐盛华,张国刚,等. 基于多状态下静动态测试数据的斜拉桥模型修正[J]. 中国公路学报,2011, 24(1):34-41.
Fang Zhi, Tang Shenghua, Zhang Guogang, et al. Cable stayed bridge model updating based on static and dynamic test data of multi-state [J]. China Journal of Highway and Transport, 2011, 24(1):34-4

PDF(1758 KB)

Accesses

Citation

Detail

段落导航
相关文章

/