为研究围压状态下水泥粉质黏土的冲击压缩特性,进行了不同围压和不同应变率条件下水泥粉质黏土的霍普金森压杆(SHPB)试验,分析了围压和应变率对水泥粉质黏土动态应力-应变曲线、冲击压缩强度以及破坏形态的影响。试验结果表明:围压和单轴状态下的水泥粉质黏土动态应力-应变曲线均经历弹性变形阶段、塑性变形阶段和破坏阶段,但是两种状态下水泥粉质黏土试样的破坏形态不同,单轴条件下水泥粉质黏土试样的破坏程度随应变率增加而逐渐变大,围压作用下水泥粉质黏土在冲击试验后保持较好的整体性。围压和应变率共同影响水泥粉质黏土的冲击压缩强度:相同应变率条件下,水泥粉质黏土冲击压缩强度随围压的增加而增大;相同围压条件下,水泥粉质黏土峰值应力和峰值应变均随应变率的增加而增大,表现出明显的应变率效应。
Abstract
To study the dynamic compression characteristics of cemented silty clay under confining pressure conditions, a series of split Hopkinson pressure bar (SHPB) tests were carried out under different confining pressures and strain rates. The effects of confining pressure and strain rate on the dynamic stressstrain curve, dynamic compression strength and failure mode of cemented silty clay were analyzed. The results show that the dynamic stressstrain curve of cemented silty clay includes three stages, namely, the elastic deformation, plastic deformation and failure stages. However, the failure modes of cemented silty clay are different in different stress states. Under uniaxial compression condition, the failure degree of cemented silty clay becomes serious gradually with the increase of strain rate, yet it shows a better integrity under confining pressure condition. Both the confining pressure and strain rate have an effect on the dynamic compression strength of cemented silty clay. At the same strain rate, the dynamic compression strength of cemented silty clay increases with the increase of confining pressure. Under the same confining pressure, the peak stress and peak strain of cemented silty clay increase with the strain rate increasing, which shows an obvious strain rate effect.
关键词
水泥粉质黏土 /
主动围压 /
SHPB试验 /
冲击压缩强度 /
应变率效应
{{custom_keyword}} /
Key words
cemented silty clay /
confining pressure /
SHPB test /
dynamic compression strength /
strain rate effect
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈四利,董凯赫,宁宝宽,等. 水泥复合土的渗透性能试验研究[J]. 应用基础与工程科学学报,2016, 24(4):758-765.
CHEN Si-li, DONG Kai-he, NING Bao-kuan, et al. Experiment study of penetrative behaviors on cement mixed soil [J]. Journal of Basic Science and Engineering, 2016, 24(4):758-765.
[2] Tsutomu Namikawa. Conditional probabilistic analysis of cement-treated soil column strength [J]. International Journal of Geomechanics, 2016, 16(1): 04015021.
[3] 刘军忠,翁兴中,张 俊,等. 简易机场纤维格栅-水泥土基层使用性能研究[J]. 建筑材料学报,2014, 17(6):1043-1048.
LIU Jun-zhong, WENG Xing-zhong, ZHANG Jun, et al. Research on fiber grid-cement soil base performance of airstrip [J]. Journal of Building Materials, 2014, 17(6):1043-1048.
[4] 吴金荣,马芹永. 透水沥青混凝土单轴冲击压缩特性研究[J]. 振动与冲击,2015, 34(4):195-216.
WU Jin-rong, MA Qin-yong. Uniaxial impact compressive characteristics of permeable asphlat concrete [J]. Journal of Vibration and Shock, 2015, 34(4):195-216.
[5] 邓永锋,吴子龙,刘松玉,等. 地聚合物对水泥固化土强度的影响及其机理分析[J]. 岩土工程学报,2016, 38(3):446-453.
DENG Yong-feng, WU Zi-long, LIU Song-yu, et al. Influence of geopolymer on strength of cement-stabilized soils and its mechanism [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(3):446-453.
[6] 李建军,梁仁旺. 水泥土抗压强度和变形模量试验研究[J]. 岩土力学,2009, 30(2):473-477.
LI Jian-jun, LIANG Ren-wang. Research on compression strength and modulus of deformation of cemented soil [J]. Rock and Soil Mechanics, 2009, 30(2):473-477.
[7] Consoli N C, Zortéa F, Souza M D, et al. Studies on the Dosage of Fiber-Reinforced Cemented Soils [J]. Journal of Materials in Civil Engineering, 2011, 23(12):1624-1632.
[8] Farzad Naseri,Mohammad Irani,Masoud Dehkhodarajabi. Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil [J].Archives of Civil and Mechanical Engineering, 2016, 16(4): 695-701.
[9] Jamshidi R J, Lake C B, Barnes C L. Examining freeze/thaw cycling and its impact on the hydraulic performance of cement-treated silty sand [J]. Journal of Cold Regions Engineering, 2015, 29(3): 04014014.
[10] 阮 波,阮 庆,田晓涛,等. 淤泥质粉质黏土水泥土无侧限抗压强度影响因素的正交试验研究[J]. 铁道科学与工程学报,2013, 10(6):45-48.
RUAN Bo, RUAN Qing, TIAN Xiao-tao, et al. The study of the orthotropic test on cemented silty clay unconfined compressive strength of muddy silty clay [J]. Journal of Railway Science and Engineering, 2013, 10(6):45-48.
[11] 曲 涛,范晓秋,刘 鑫. 水泥砂浆固化土抗压强度特性试验[J]. 河海大学学报(自然科学版),2012, 40(2):173-179.
QU Tao, FAN Xiao-qiu, LIU Xin. Experimental study of compressive strength properties of soils stabilized by cement mortar [J]. Journal of Hohai University(Natural Sciences), 2012, 40(2):173-179.
[12] 周海龙,申向东,薛慧君. 小龄期水泥土无侧限抗压强度试验研究[J]. 山东大学学报(工学版),2014, 44(1):75-79.
ZHOU Hai-long, SHEN Xiang-dong, XUE Hui-jun. Experiment research on unconfined compressive strength of cement soil under small age [J]. Journal of Shandong University, 2014, 44(1):75-79.
[13] 刘泉声,柳志平,程 勇,等. 水泥土在侵蚀环境中的试验研究和等效分析[J]. 岩土力学,2013, 34(7):1854-1860.
LIU Quan-sheng, LIU Zhi-ping, CHENG Yong. Experimental study and equivalent analysis of cemented soil under corrosion environment [J]. Rock and Soil Mechanics, 2013, 34(7):1854-1860.
[14] 王 斌,李夕兵,尹土兵,等. 饱水砂岩动态强度的SHPB试验研究[J]. 岩石力学与工程学报,2010, 29(5):1003-1009.
WANG Bin, LI Xi-bing, YIN Tu-bing, et al. Split hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturted sandstone [J].Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5):1003-1009.
[15] 马芹永,张经双,陈文峰,等. 人工冻土围压SHPB试验与冲击压缩特性分析[J]. 岩土力学,2014, 35(3): 637-640.
MA Qin-yong, ZHANG Jing-shuang, CHEN Wen-feng, et al. Analysis of SHPB test and dynamic compression in confining pressure for artificial frozen soil [J]. Rock and Soil Mechanics, 2014, 35(3): 637-640.
[16] 刘少赫,许金余,王 鹏,等. 围压条件下砂岩循环冲击损伤的力学与超声分析[J]. 振动与冲击,2015, 34(1):190-194.
LIU Shao-he, XU Jin-yu, WANG Peng, et al. Mechanical and ultrasonic analysis on damage of sandstone under cyclical impact loading with confining pressure [J]. Journal of Vibration and Shock, 2015, 34(1):190-194.
[17] Yang L M, Shim V P W. An analysis of stress uniformity in split Hopkinson bar test specimens [J]. International Journal of Impact Engineering, 2005, 31(2):129-150.
[18] 毛勇建,李玉龙. SHPB试验中试件的轴向应力均匀性[J]. 爆炸与冲击,2008, 28(5):448-454.
MAO Yong-jian, LI Yu-long. Axial atress uniformity in specimens of SHPB tests [J]. Explosion and Shock Waves, 2008, 28(5):448-454.
[19] 马冬冬,马芹永,袁璞,等. 冻结黏土单轴与主动围压状态SHPB试验对比分析[J]. 振动与冲击, 2017, 36(18).
MA Dong-dong, Ma Qin-yong, YUAN Pu, et al. Comparison analysis and SHPB tests under uniaxial load and confining pressure states of artificial frozen clay [J]. Journal of Vibration and Shock, 2017, 36(18).
[20] 高常辉,马芹永. 玄武岩纤维掺砂水泥土压拉强度的试验分析[J]. 科学技术与工程,2017, 17(2):262-266.
GAO Chang-hui, MA Qin-yong. Experiment and analysis on performance of compression and tension strength for basalt fiber-sand reinforced cement soil [J]. Science Technology and Engineering, 2017, 17(2):262-266.
[21] 平 琦,马芹永,卢小雨,等. 被动围压条件下岩石材料冲击压缩试验研究[J]. 振动与冲击,2014, 33(2):55-59.
PING Qi, MA Qin-yong, LU Xiao-yu, et al. Dynamic compression test of rock material under passive confining pressure conditions [J]. Journal of Vibration and Shock, 2014, 33(2):55-59.
[22] 刘志强,柳家凯,王 博,等. 冻结黏土动态力学特性的SHPB试验研究[J]. 岩土工程学报,2014, 36(3):409-416.
LIU Zhi-qiang, LIU Jia-kai, WANG Bo, et al. Dynamic characteristics of frozen clay by using SHPB tests [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3):409-416.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}