斜拉索是斜拉桥的基本受力构件之一,其承受的风荷载占桥梁总体风荷载的比例很大,因此其风振问题是设计研究的重点。以风洞试验为研究手段,通过自行设计的斜拉索测振试验系统,对直径为120mm的斜拉索模型和25种螺旋线拉索模型进行了刚性模型测振试验,得到了不同斜拉索模型振幅随雷诺数的变化规律。结果表明:斜拉索上缠绕螺旋线能减弱雷诺数效应;当螺旋线缠绕间距一定,随着螺旋线直径的增加,斜拉索振幅变化呈不完全单调的减小趋势;当螺旋线直径一定,随螺旋线间距减小,斜拉索振幅变化整体呈单调减小的趋势;随着螺旋线直径的增加和间距的减小,振动稳定性有所提高。
Abstract
Cable is one of the basic construction members of a cablestayed bridge. The wind loads on cables constitute a high proportion of total wind loads on the bridge, and the windinduced vibration is an important problem of great concern in bridge design. Through a selfdesigned vibration test system for staycables, the vibration model tests for a rigid staycables model with diameter of 120 mm as well as for 25 kinds models of staycables wound with helical lines were conducted in a wind tunnel.The changing rule of the vibration amplitude along with the Reynolds number was analyzed. The results show that winding a helical line on the cable can reduce the Reynolds number effects on it. When the helical line winding spacing is constant, the amplitude trends to decrease along with the increase of helical line diameter. When the helical line diameter is constant, the amplitude trends to decrease along with the decrease of helical line winding spacing. The vibration stability is improved with the increase of helical line diameter and the decrease of helical line winding spacing.
关键词
斜拉索 /
螺旋线 /
雷诺数 /
自由振动 /
振动稳定性
{{custom_keyword}} /
Key words
stay-cables /
helical line /
Reynolds number /
free vibration /
vibration stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HIKAMI Y, SHIRASHI N. Rain-wind induced vibrations of cables in cable stayed bridges [J]. Journal of Wind Engieering and Idustrial Asrodynamics, 1988, 29:409-418.
[2] ZUO D, JONES N P, Main J A. Field observation of vortex and rain-induced stay-cable vibrations in three-dimensional environment [J]. Journal of Wind Engineering and Industrial Aerodynamicc, 2008, 96(6): 1124-1133.
[3] MATSUMOTO M, The role of water rivulet on inclined cable aerodynamics [C]. Proceedings of the 6th Asia-Pacific Conference on Wind Engineering Seoul, Korea, 2005: 63-77.
[4] 顾明,刘慈军,罗国强,等. 斜拉桥斜拉 索的风雨激振及控制[J]. 上海力学,1998, 19(4): 283-288.
GU Ming, LIU Cijun, LUO Guoqiang, et al. Rain-wind induced viration of cable on cable-stayed bridges and its control [J]. Shanghai Journal of Mechanics, 1998, 19(4): 283-288.
[5] 顾明,杜晓庆. 斜拉桥斜拉索风雨激振及其控 制的试验研究[J]. 风工程和空气动力学学报, 2005, 93(1): 79-95.
GU Ming, DU Xiaoqing. Experimental investigation of rain-wind induced vibration of cables in cable-stayed bridges and its mitigation [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(1): 79-95.
[6] ROCCHI D, ZASSO A. Vortex shedding from a circular cylinder in a smooth and wired configuration: comparison between 3D LES simulation and experimental analysis [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(4): 475-489.
[7] 李寿英,钟卫. 缠绕螺旋线斜拉索气动性能的 试验研究[J]. 土木工程学报,2013, 46(7): 108-115.
LI Shouying, ZHONG Wei. Experimental study on the aerodynamic performance of the helical line cable [J]. China Civil Engineering Journal, 2013, 46(7): 108-115.
[8] 刘庆宽,郑云飞,等. 螺旋线参数对斜拉索风 雨激振抑振效果的试验研究[J]. 工程力学学 报,2016, 33(10): 138-144.
LIU Qingkuan, ZHENG Yunfei, et al. Experimental study on the effect of helical line parameters on wind-rain induced vibration of stay cables. Journal of Engineering Mechanics, 2016, 33(10): 138-144.
[9] FALMAND O, BOUJARD O. A comparison between dry cylinder and rain-wind induced excitation [C]. Proceeding of the 5thEuropean and African Congress on Wind Engineering. 2009: 19-23.
[10] ZUO D,JONES NP. Interpretation of field observations of wind- and rain-windinduced staycable vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(2): 73-87.
[11] MATSUMOTO M, YAGI T, HATSUDA H, SHIMA T,TANAKA M, NAITO H. Dry galloping characteristics and its mechanism of inclined/yawed cables [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6–7): 317-327.
[12] CHENG S, LAROSE G, SAVAGE M, TANAKA H. Experimental study on the wind-induced vibration of a dry inclined cable--Part I: Phenomena [J]. Journal of Wind Engineeringand Industrial Aerodynamics, 2008, 96(12): 2231-2253.
[13] BENIDIR A, FLAMAND O, GAILLET L, DIMITRIADIS G. Impact of roughness and circularity-defect on bridge cables stability [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 137(2):1-13.
[14] PICCARDO G, CARASSALE L, FREDAA.Some research perspectives in galloping phenomena:critical conditions and post-critical behavior. Continuum Mach. Thermodynamic,2015, 27(2): 261-285.
[15] NIKITAS N,MACDONALD M,Aerodynamic Forcing characteristics of dry cable galloping at critical Reynolds Number [J]. European Journal of Mechanics Fluids, 2015, 49(5): 243-249.
[16] 刘庆宽,李聪辉,郑云飞等.缠绕螺旋线的斜 拉桥斜拉索平均气动阻力特性的试验研究[J]. 土木工程学报.(已录用)
LIU Qingkuan, LI Conghui, ZHENG Yunfei, et al. Experimental study on the characteristics of average rupture coefficient of spiral cable [J]. China Civil Engineering Journal.
[17] 刘庆宽,闫煦东,李聪辉等. 不同粗糙度斜拉 索气动力特性和风荷载计算方法研究[J]. 振动与冲击.(已录用)
LIU Qingkuan, YAN Xudong, LI Conghui, et al. Study on aerodynamic characteristics and wind load calculation of cable-stayed ropes with different roughness [J]. Journal of Vibration and Shock.
[18] 刘庆宽. 多功能大气边界层风洞的设计与建 设[J]. 实验流体力学,2011, 25(3): 66-70.
LIUQingkuan. Aerodynamic and structure design of multifunction boundary-layer wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):66-70.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}