考虑频变阻尼的粘弹性阻尼层板结构模态分析方法

周 航1,校金友2,徐 超2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 208-213.

PDF(1413 KB)
PDF(1413 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 208-213.
论文

考虑频变阻尼的粘弹性阻尼层板结构模态分析方法

  • 周  航1,校金友2,徐  超2
作者信息 +

Modal analysis method for viscoelastically damped laminated structures with frequency-dependent damping

  • ZHOU Hang 1,XIAO Jinyou2,XU Chao2
Author information +
文章历史 +

摘要

结构动力中的模态分析可归结为数学上矩阵特征值问题的求解。研究了一种求解有限元非线性特征值问题的数值方法,即RSRR,该方法通过对系统矩阵逆矩阵的采样,构造可靠的特征空间用于非线性特征值问题的求解,比现有基于围道积分的非线性特征值解法稳定性更好、精度更高。采用基于Layerwise离散层理论的Layerwise板单元建立粘弹性阻尼结构有限元模型比混合单元建模方法简单方便,结合Layerwise板单元建模方法,将RSRR拓展应用于粘弹性阻尼结构的模态分析,算例结果表明RSRR求解精度高、稳定性好,是粘弹性阻尼结构模态分析的有效数值方法。

Abstract

The modal analysis in structure dynamics can be summed up as solving the eigen problems of matrices in mathematics. A numerical method for solving the nonlinear eigen problems (NEPs) in finite element analysis was introduced, namely RSRR. In the method, by sampling the inverse matrix of the system matrix, a reliable eigenspace was constructed to solve the NEPs, which has better stability and higher precision than the existing eigenvalue solving method based on the contour integral. It is simple and convenient to establish the finite element model of viscoelastic damping structures by using the Layerwise plate element based on the Layerwise discrete plate theory. Combined with the Layerwise plate element modeling method, the RSRR was extended to solve the NEPs of viscoelastic damping structures. The results show that the RSRR has high accuracy and good stability, and is an efficient numerical method for the modal analysis of viscoelastic damping structures
 

关键词

粘弹性 / 模态分析 / Rayleigh-Ritz方法 / Layerwise板单元

Key words

viscoelastic / modal analysis / Rayleigh-Ritz method;Layerwise plate element

引用本文

导出引用
周 航1,校金友2,徐 超2. 考虑频变阻尼的粘弹性阻尼层板结构模态分析方法[J]. 振动与冲击, 2018, 37(14): 208-213
ZHOU Hang 1,XIAO Jinyou2,XU Chao2. Modal analysis method for viscoelastically damped laminated structures with frequency-dependent damping[J]. Journal of Vibration and Shock, 2018, 37(14): 208-213

参考文献

[1] Vasques C M A, Moreira R A S, Dias J. Viscoelastic Damping Technologies–Part I: Modeling and Finite Element Implementation⋆[J]. 2010.
[2] 潘坚, 雷治大. 阻尼减振技术在航天领域中的实践[J]. 宇航材料工艺, 1991(4):87-90.
Pan Jian, Lei Zhida. Practice of damping vibration reduction technology in aerospace field[J]. Aerospace Materials & Technology,  1991(4):87-90.
[3] Sakurai T, Sugiura H. A projection method for generalized eigenvalue problems using numerical integration[J]. Journal of Computational & Applied Mathematics, 2003, 159(1):119-128.
[4] Polizzi E. A density matrix-based algorithm for solving eigenvalue problems[J]. Physical Review B 79(11) (2009) 115112.
[5] Asakura J, Sakurai T, Tadano H, et al. A numerical method for nonlinear eigenvalue problems using contour integrals[J]. JSIAM Letters, 2009, 1(1):52-55.
[6] Beyn W J. An integral method for solving nonlinear eigenvalue problems[J]. Linear Algebra & Its Applications, 2010, 436(10):3839-3863.
[7] Yokota S, Sakurai T. A projection method for nonlinear eigenvalue problems using contour integrals[J]. JSIAM Letters, 2013, 5:41-44.
[8] 张少辉, 陈花玲. 共固化复合材料粘弹阻尼结构的损耗因子研究[J]. 航空材料学报, 2005, 25(1):53-57.
ZHANG Shaohui,Chen Hualing. Damping analysis of cocured composites with interleaved viscoelastic layer Journal of Aeronautical Materials, 2005,25( 1) : 53 -57.
[9] 徐超, 田伟. 卫星飞轮安装支架的粘弹性阻尼减振设计[J]. 噪声与振动控制, 2010(3):1-4.
Xu Chao, Tian Wei. Viscoelastic damping vibration reduction design of satellite flywheel mounting support[J]. Noise and Vibration Control, 2010(3):1-4.
[10] Zhang S H, Chen H L. A study on the damping characteristics of laminated composites with integral viscoelastic layers[J]. Composite Structures, 2006, 74(1):63-69.
[11] 徐超, 林松, 王立峰,等. 基于 Layerwise 理论的共固化粘弹阻尼复合材料动特性分析[J]. 振动与冲击, 2015(1):6-12.
Xu Chao, Lin Song, Wang Lifeng, et al. Layerwise dynamic analysis of composite laminates with co-cured viscoelastic damping layers[J]. Vibration and Shock, 2015(1):6-12.
[12] Bilasse M, Charpentier I, Daya E M, et al. A generic approach for the solution of nonlinear residual equations. Part II: Homotopy and complex nonlinear eigenvalue method[J]. Computer Methods in Applied Mechanics & Engineering, 2009, 198(49–52):3999-4004.
[13] Xiao J, Meng S, Zhang C, et al. Resolvent sampling based Rayleigh–Ritz method for large-scale nonlinear eigenvalue problems[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 310: 33-57.
[14] Mehrmann V, Schröder C. Nonlinear eigenvalue and frequency response problems in industrial practice[J]. Journal of Mathematics in Industry, 2011, 1(1): 7.

PDF(1413 KB)

Accesses

Citation

Detail

段落导航
相关文章

/