嗅球神经系统的发放模式与同步运动

景雷程1,王如彬1,诸震宇1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 51-58.

PDF(2053 KB)
PDF(2053 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (14) : 51-58.
论文

嗅球神经系统的发放模式与同步运动

  •  景雷程1,王如彬1,诸震宇1
作者信息 +

Firing pattern and synchronization kinematics of an olfactory bulb neural system

  • JING Leicheng,  WANG Rubin,  ZHU Zhenyu
Author information +
文章历史 +

摘要

在嗅觉神经系统的信号传导过程中,僧帽细胞同步振荡活动模式的变化对于嗅球的编码与解码是十分重要的。为了研究颗粒细胞和球旁细胞如何影响僧帽细胞的同步发放,构造了僧帽细胞、颗粒细胞和球旁细胞这三种细胞的动力学模型,通过数值模拟得到了这三种细胞的发放模式。并通过构建网络模型,比较了各种不同细胞和在网络条件下它们之间的发放的差别。最后分析僧帽细胞群的同步运动,发现颗粒细胞和球旁细胞的抑制性作用促进了僧帽细胞的同步性。

Abstract

During the process of signal transducing in an olfactory nerve system, the change of synchronous oscillatory kinematic pattern of mitral cells(MCs) is very important for coding and decoding in the olfactory bulb.To study how the granule cell(GC) and periglomerular cell(PGC) have influenced the synchronous oscillatory kinematic pattern of mitral cells,a dynamical model for these three kinds of cells including mitral cells, granular cells and periglomerular cells was set up.Through numerical simulations, the firing patterns of the three kinds of cells were got. Then a network model for the olfactory bulb was set up for comparing the difference between the firing patterns of different cells and the difference between the conditions of with and without network. In addition, the synchronization kinematics of MCs was analyzed, and it is found that the inhibitory effect of GC and PGC contributes to the synchronization kinematics of MCs.

关键词

嗅觉神经网络 / 僧帽细胞 / 颗粒细胞 / 球旁细胞 / 同步性

Key words

olfactory neural network / mitral cell / granule cell / periglomerular cell / synchronization

引用本文

导出引用
景雷程1,王如彬1,诸震宇1. 嗅球神经系统的发放模式与同步运动[J]. 振动与冲击, 2018, 37(14): 51-58
JING Leicheng, WANG Rubin, ZHU Zhenyu. Firing pattern and synchronization kinematics of an olfactory bulb neural system[J]. Journal of Vibration and Shock, 2018, 37(14): 51-58

参考文献

[1] Gu F J, Liang P J. Neural Information Processing [M]. Beijing:Press Beijing Univ,2007.75-76. (in Chinese).
[2] Wolf S. Distributed processing and temporal codes in neu-ronalnetworks[J], Cognitive Neurodynamics, 2009,3(3):189–196.
[3] Hirofumi H, Toshikazu S ,Tadanobu C K, et al. Spatial information enhanced by non-spatial information in hippocampal granule cells[J], Cognitive Neurodynamics,2015, 9:1–12.
[4] Victor M L, Nathan E S. GABAergic Circuits Control Input–Spike Coupling in the Piriform Cortex [J]. The Journal of Neuroscience,2008, 28(35):8851–8859.
[5] Du Y, Wang R, Han F, et al. Firing pattern and synchronization property analysis in a network model of the olfactory bulb[J], Cognitive Neurodynamics,2012, 6:203–209.
[6] Lledo P M, Gheusi G, Vincent J D. Information processing in the mammalian olfactory system[J]. Physiological Reviews,2005,85:281–317.
[7] Andreas T S, Troy W M. Spatiotemporal representations in the olfactory system[J], TRENDS in Neurosciences,2007,30(3):92-100.
[8] Liu Y, Wang R, Zhang Z, et al. Analysis on stability of neural network in the presence of inhibitory neurons. Cognitive Neurodynamics, 2004,24(42):9341-9352.
[9] Sang-Yoon K, Woochang L. Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons[J],Cognitive Neurodynamics,2013, 7:495–503.
[10] Stopfer M, Bhagavan S, Smith B H, et al. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies[J].Nature ,1997,390:70–74.
[11]Marion N, Alvaro S D,Arvind K, et al. Intraglomerular Lateral Inhibition Promotes Spike Timing Variability in Principal Neurons of the Olfactory Bulb[J]. The Journal of Neuroscience,2015, 35(10):4319–4331..
[12] Shou T. Neurobiology.the second edition [M]. Beijing: Higher Education Press, 2006.268-273.(in Chinese).
[13] Kosaka K, Kosaka T. Chemical properties of type 1 and type 2 peri-glomerular cells in the mouse olfactory bulb are different from those in the rat olfactory bulb[J]. Brain Research,2007, 1167:42–55.
[14] Kato H K, Gillet S N, Peters A J, et al. Parvalbumin-expressing interneurons linearly control olfactory bulb out-put[J]. Neuron,2013, 80:1218–1231.
[15]Miyamichi K, Shlomai-Fuchs Y, Shu M, et al. Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output[J]. Neuron ,2013,80:1232–1245.
[16] Najac M, De Saint Jan D, Reguero L, et al. Mono-synaptic and polysynaptic feed-forward inputs to mitral cells from olfactory sensory neurons[J], Neuroscience,2011, 31:8722–8729.
[17] Shao Z, Puche A C, Liu S, et al.Intraglomerular inhibition shapes the strength and temporal structure of glomerular output[J].Neurophysiology,2012, 108:782–793.
[18] Xu A, Du Y, Wang R, et al. Interaction between Different Cells in Olfactory Bulb and Synchronous Kinematic Analysis[J]. Discrete Dynamics in Nature and Society,2014, Article ID 808792, 9 pages.
[19] Dong H W, Hayar A, Ennis M.Activation of group I metabotropic glutamate receptors on main olfactory bulb granule cells and periglomerular cells enhances synaptic inhibition of mitral cells[J],Neuroscience,2007,27:5654–5663.
[20] John G N, Robert M, Bruce G W. From Neuron to Brain. Fourth editor. Sinauer Association. 2001.
[21] Guoshi L , Thomas A C. A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb[J].The Journal of Neuroscience ,2013, 33(7):3037–3058.
[22] Jorge N B, Leslie M K, Nancy J K. Biophysical model for gamma rhythms in the olfactor0y bulb via subthreshold oscillations[J]. PNAS, 2009, 106(51).
[23] Bhalla U S, Bower J M. Exploring parameter space in detailed single neuron models: Simulations of the mitral and granule cells of the olfactory bulb[J].The Journal of Neuroscience, 1993,69: 1948-1965.
[24] Jie M, Graeme L. Action Potential Backpropagation and Multi-glomerular Signaling in the Rat Vomeronasal System. The Journal of Neuroscience, 2010,4:61-68.
[25] Qu J, Wang R, Du Y, et al. Synchronization study in ring-like and grid-like neuronal networks[J], Cognitive Neurodynamics, 2012, 6(1): 21–31.
[26] Liu Y, Wang R, Zhang Z, et al. Analysis of stability of neural network with inhibitory neurons[J], Cognitive Neurodynamics, 2010, 4(1):61–68.
[27] Daniel R L, Leslie M K. Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system[J], Cognitive Neurodynamics,2008, 2:179–194.
[28] Mori K, Nagao H, Yoshihara Y. The olfactory bulb: coding and processing of odor molecule information. Science ,1999,286:711–715.

PDF(2053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/