[1]庞茂. 汽车主减速器振动信号非线性特征研究 [D]; 浙江大学, 2006.
[2]刘永斌. 基于非线性信号分析的滚动轴承状态监测诊断研究 [D]; 中国科学技术大学, 2011.
[3]董洪波, 申中杰, 姚亚峰. 基于TWSVM的煤矿井下钻机轴承故障诊断 [J]. 煤矿机械, 2015, 36(5): 298-300.
DONG Hongbo,SHEN Zhongjie, YAO Yafeng. Based on TWSVM drill bearing in coal mine fautt diagnosis [J]. Coal Mine Machinery, 2015, 36(5):298-300.
[4]王震. 基于双重支持向量机的分类算法研究 [D]; 吉林大学, 2010.
[5]易辉, 宋晓峰, 姜斌, et al. 样本不均衡条件下基于自调整支持向量机的故障诊断 [J]. 北京理工大学学报, 2013, 33(4): 394-398.
YI Hui, SONG Xiaofeng, JIANG Bin, et al. Fault diagnosis based on self-tuning support vector machine in sample unbalance condition [J]. Transactions of Beijing Institute of Technology, 2013, 33(4):394-398.
[6]JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin Support Vector Machines for pattern classification [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(5): 905-10.
[7]谢娟英, 张兵权, 汪万紫. 基于双支持向量机的偏二叉树多类分类算法 [J]. 南京大学学报:自然科学版, 2011, 47(4): 354-63.
XIE Juanying, ZHANG Bingquan, WANG Wanzi. A partial binary tree algorithm for multiclass classification based on twin support vector machines [J]. Journal of Nanjing University(Natural Sciences), 2011, 47(4): 354-63.
[8]刘建明. 基于粒子群算法的双子支持向量机研究 [J]. 软件导刊, 2015, 06): 72-5.
LIU Jianming. Research on twin Support vector machines based on particle swarm optimization [J]. Software Guide, 2015, 14(6): 72-75.
[9]于俊钊. 孪生支持向量机及其优化方法研究 [D]; 中国矿业大学, 2014.
[10]BISHOP C M. Neural Networks for Pattern Recognition [J]. Agricultural Engineering International the Cigr Journal of Scientific Research & Development Manuscript Pm, 1995, 12(5): 1235 - 42.
[11]郝研. 分形维数特性分析及故障诊断分形方法研究 [D]; 天津大学, 2012.
[12]胥永刚, 何正嘉. 分形维数和近似熵用于度量信号复杂性的比较研究 [J]. 振动与冲击, 2003, 22(3): 25-7.
XU Yonggang, HE Zhengjia. Research on comparison between approximate entropy and fractal dimension for complexity measure of signals [J]. Journal of Vibration and Shock, 2003, 22(3): 25-7.
[13]PINCUS S M. Approximate entropy as a measure of system complexity [J]. Proceedings of the National Academy of Sciences, 1991, 88(6): 2297-301.
[14]赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法 [J]. 振动与冲击, 2012, 31(6): 136-40.
ZHAO Zhihong, YANG Shaopu. Sample entropy-based roller bearing fault diagnosis method [J]. Journal of Vibration and Shock, 2012, 31(6):136-140.
[15]刘慧, 谢洪波, 和卫星, et al. 基于模糊熵的脑电睡眠分期特征提取与分类 [J]. 数据采集与处理, 2010, 04): 484-9.
LIU Hui, XIE Hongbo, HE Weixing, et al. Characterization and classification of EEG sleep stage based on fuzzy entropy [J]. Journal of Data Acquisition & Processing, 2010, 25(4):484-9.
[16]徐可君, 夏毅锐, 江龙平. 基于Kolmogorov熵的转子-机匣系统故障诊断研究 [J]. 海军航空工程学院学报, 2006, 21(4): 437-40.
XU Kejun, XIA Yirui, JIANG Longping. Fault diagnosis research of rotor-case system based on Kolmogorov entropy [J]. Journal of naval aeronautical engineering institute, 2006, 21(4):437-440.
[17]黄明英, 王德明, 朱志宇. Kolmogorov熵在船舶电力系统可靠性研究中的应用 [J]. 舰船科学技术, 2009, 31(3): 60-3.
HUANG Mingying, WANG Deming, ZHU Zhiyu. Application of Kolmogorov entropy in reliability research of ship power system [J]. Ship Science And Technology, 2009, 31(3):60-63.
[18]刘子军. 基于TSVM的铁路电力系统谐波检测方法研究 [D]; 重庆大学, 2015.