为改善商用车辆的平顺性、安全性并减小轮胎动载对路面的破坏,以某6×4牵引列车为研究对象,建立12自由度振动力学模型。以车辆平顺性和轮胎动载为优化目标,选择前后悬架弹簧刚度、减振器阻尼系数为优化参数,设计了一种基于改进多目标粒子群优化算法MDPL-MOPSO的悬架系统多目标优化策略。悬架系统优化前后的结果对比表明,本文提出的改进多目标粒子群优化策略在改善车辆平顺性的同时,兼顾了轮胎动载对路面的损坏,具有较好的优化效果,对重型商用车在开发阶段平顺性和安全性优化评估具有一定的指导意义。
Abstract
In order to improve ride comfort and safety of a vehicle and reduce road surface damage due to tire dynamic load, a 6 × 4 tractor combination vehicle was taken as a study object to establish its 12-DOF vibration mechanical model. The vehicle’s ride comfort and tire dynamic load were taken as optimization objectives, spring rigidities of its front and rear suspensions and damping coefficient of its damper were taken as parameters to be optimized. Here, a multi-objective optimization strategy for a vehicle’s suspension system based on an improved multi-objective particle swarm optimization (PSO) algorithm called the minimum distance of point to line multi-object particle swarm optimization (MDPL-MOPSO) was designed. The results before and after a suspension system was optimized were compared. The comparison showed that the improved multi-objective particle swarm optimization strategy improves the vehicle ride comfort, and reduces damage of road surface due to tire dynamic load, it has a better optimization effect, and it provided a guide for optimization evaluation of commercial vehicles’ ride comfort and safety in their development stage.
关键词
商用车 /
平顺性 /
轮胎动载荷 /
悬架系统 /
多目标优化 /
粒子群
{{custom_keyword}} /
Key words
commercial vehicle /
ride comfort /
tire dynamic load /
suspension system /
multi-objective optimization /
particle swarm optimization (PSO)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Els P S, Uys P E. Investigation of the applicability of the dy-namic-Q optimization algorithm to vehicle suspension design [J]. Mathematical & Computer Modeling, 2003, 37(9–10):1029-1046.
[2] Gonçalves J P C, Ambrósio J A C. Optimization of Vehicle Suspension Systems for Improved Comfort of Road Vehicles Using Flexible Multi-body Dynamics [J]. Nonlinear Dynamics, 2003, 34(1):113-131.
[3] Yang Y, Ren W, Chen L, et al. Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics [J]. Applied Mathematical Modelling, 2009, 33(1):11-33.
[4] Nariman-Zadeh N, Salehpour M, Jamali A, et al. Pareto opti-mization of a five-degree of freedom vehicle vibration model using a multi-objective uniform-diversity genetic algorithm (MUGA)[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4): 543-551.
[5] Mahmoodabadi M J, Safaie A A, Bagheri A, et al. A novel com-bination of Particle Swarm Optimization and Genetic Algorithm for Pareto optimal design of a five-degree of freedom vehicle vibration model [J]. Applied Soft Computing, 2013, 13(5):2577-2591.
[6] 刘伟, 史文库, 桂龙明,等. 基于平顺性与操纵稳定性的悬架系统多目标优化[J]. 吉林大学学报(工), 2011, 41(5):1199-1204.
Liu Wei, Shi Wenku, Gui Longming, et al. Multi-objective optimi-zation of suspension system based on vehicle ride comfort and handling stability[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5):1199-1204.
[7] Coello C A C, Lechuga M S. MOPSO: a proposal for multiple objective particle swarm optimization[C].Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on. IEEE, 2002:1051-1056.
[8] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279.
[9] Hu X, Eberhart R C, Shi Y. Particle swarm with extended memory for multi-objective optimization[C]. Swarm Intelligence Symposium, 2003. Sis '03. Proceedings of the. IEEE Xplore, 2003:193-197.
[10] Fieldsend J.E.,Sing S. A multi-objective algorithm based upon particle swarm optimization, an efficient data structure and turbulence [J]. Proceedings of the 2002 U.K. Workshop on Com-putational Intelligence,2002:37-44.
[11] Mostaghim S, Teich J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) [C]. Swarm Intelligence Symposium, 2003. Sis '03. Proceedings of the IEEE Xplore, 2003:26-33.
[12] Raquel C R, Naval P C. An effective use of crowding distance in multi-objective particle swarm optimization[C]. Genetic and Evolutionary Computation Conference, GECCO 2005, Proceedings, Washington Dc, Usa, June. DBLP, 2005:257-264.
[13] 闻邦椿. 机械振动理论及应用[M]. 刘树英,陈照波,等. 北京:高等教育出版社,2009.
[14] 张立军,张天侠. 车辆四轮相关时域随机输入通用模型的研究[J]. 农业机械学报,2005,12(36):29-31,12.
Tan Runhua. The mathematical models in time domain for the road disturbances and the simulation [J]. China Journal of Highway and Transport, 1998, 11(3): 96-102.
[15] GB/T 13441.1-2007 机械振动与冲击人体暴露于全身振动的评价第1部分:一般要求[S].
[16] GB/T 7031-2005机械振动道路路面谱测量数据报告[S].
[17] 游浩,申永军,杨绍普. 基于粒子群算法的被动分数阶汽车悬架参数优化设计[J]. 振动与冲击,2017,36(16): 35-.
YOU Hao, SHEN Yong-jun, YANG Shao-pu. Parameters Design for Passive Fractional-order Vehicle Suspension Based on Particle Swarm Optimization [J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(16): 35-.
[18] 王涛,陶薇. 考虑随机因素的汽车悬架参数多目标稳健优化[J]. 振动与冲击,2009, 28(11):146-149.
WANG Tao, Tao Wei. Multi-objective Robust Optimization of Au-tomobile Suspension Parameters Considering Random Factors [J]. JOURNAL OF VIBRATION AND SHOCK, 2009, 28(11): 146-149.
[19] 庞辉,彭威,原园. 随机激励下重载车辆空气悬架参数多目标优化[J]. 振动与冲击,2014,33(6):156-160.
PANG Hui, PENG Wei, YUAN Yuan. Multi-objective optimization of the pneumatic suspension parameters for heavy vehicle under random excitation[J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(6): 156-160.
[20] 庞辉,方宗德,李红艳,王继锋. 某载重卡车悬架参数优化及试验研究[J]. 振动与冲击, 2012,31(8):92-95, 1.
Pang Hui, Fang Zong-de, Li Hong-yan, Wang Ji-feng . Optimization and test for suspension parameters of a heavy-duty truck. JOURNAL OF VIBRATION AND SHOCK, 2012, 31(8): 92-95,1.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}