基于车-桥随机振动模型的简支梁桥墩顶垂向动反力特征研究

朱志辉1,2,黄承志1,王力东1,时瑾3,余志武1,2,蔡成标4

振动与冲击 ›› 2018, Vol. 37 ›› Issue (15) : 225-232.

PDF(2358 KB)
PDF(2358 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (15) : 225-232.
论文

基于车-桥随机振动模型的简支梁桥墩顶垂向动反力特征研究

  • 朱志辉1,2,黄承志1,王力东1,时瑾3,余志武1,2,蔡成标4
作者信息 +

Random characteristics for vertical dynamic reaction force of pier-top of a simply supported girder bridge based on train-bridge random vibration model

  • ZHU Zhihui1,2,HUANG Chengzhi1,WANG Lidong1,SHI Jing3,YU Zhiwu1,2,CAI Chengbiao4
Author information +
文章历史 +

摘要

为研究高速铁路简支梁桥墩顶垂向动反力的随机性特征,基于虚拟激励法和有限元方法,建立了列车-轨道-桥梁耦合系统竖向随机振动模型。采用多体动力学理论建立具有二系悬挂的质量-弹簧-阻尼系统列车模型;采用有限元方法建立轨道-桥梁有限元模型;基于等效Hertz线性轮轨接触关系建立列车-轨道-桥梁耦合系统动力学方程。通过虚拟激励法将轨道高低不平顺转化为一系列简谐不平顺的叠加,将非平稳随机振动问题转化为确定性时间历程问题,推导了列车-轨道-桥梁耦合时变系统随机振动计算模型。基于该计算模型,以五跨32m预应力混凝土简支箱梁桥为研究对象,研究了轨道不平顺和车速对墩顶垂向动反力随机特征的影响。结果表明:墩顶垂向动反力受列车轴重引起的确定性激励控制,轨道不平顺随机激励对其影响显著;不同轨道不平顺随机激励下墩顶动反力均方根(σ)不同,基于3σ法得到的限值(μ±3σ)相差较大;随着车速的增大,墩顶动反力均方根(σ)逐渐增大。

Abstract

In order to study random characteristics of vertical dynamic reaction force of pier-top (VDRFP) of a simply supported girder bridge, a vertical random vibration model for a train-track-bridge coupled system was established based on the pseudo-excitation method (PEM) and the finite element method. A mass-spring-damper system model with two-layer suspensions for the train was built utilizing the multibody dynamics theory, and the track-bridge model was built with the finite element method. The dynamic equations of the train-track-bridge coupled system were established based on the equivalent Hertz linear wheel/rail contact relation. Adopting the Pseudo-excitation method (PEM), the vertical track profile irregularity was converted into a superposition of harmonic excitations, then a non-stationary random vibration problem was converted into a deterministic time history problem, and a random vibration calculation model for the train-track-bridge coupled time-varying system was deduced. Based on the calculation model, taking a 5-span 32m prestressed concrete simply supported box girder bridge as a study object, the effects of track irregularity and train speed on VDRFP random characteristics were analyzed. The results showed that VDRFP is controlled by the deterministic excitation caused by vehicle axle load, and track irregularity-induced random excitation affects it significantly; RMSs (σ) of VDRFP are different under different track irregularity-induced random excitations, and the limit values (μ±3σ) obtained based on the 3σ method are quite different; with increase in train speed, RMSs (σ) of VDRFP increase gradually.

关键词

列车-轨道-桥梁耦合系统 / 高速铁路 / 墩顶动反力 / 随机振动 / 虚拟激励法

Key words

train-track-bridge coupled system / high-speed railway / dynamic reaction force of pier-top / random vibration / pseudo-excitation method

引用本文

导出引用
朱志辉1,2,黄承志1,王力东1,时瑾3,余志武1,2,蔡成标4. 基于车-桥随机振动模型的简支梁桥墩顶垂向动反力特征研究[J]. 振动与冲击, 2018, 37(15): 225-232
ZHU Zhihui1,2,HUANG Chengzhi1,WANG Lidong1,SHI Jing3,YU Zhiwu1,2,CAI Chengbiao4. Random characteristics for vertical dynamic reaction force of pier-top of a simply supported girder bridge based on train-bridge random vibration model[J]. Journal of Vibration and Shock, 2018, 37(15): 225-232

参考文献

[1] 夏禾, 曹艳梅. 轨道交通引起的环境振动问题[J]. 铁道科学与工程学报, 2004, 1(1): 44-51.
XIA He, CAO Yan-mei. Problem of railway traffic induced vibrations of environments[J]. Journal of Railway Science and Engineering, 2004, 1(1): 44-51.
[2] 朱志辉, 余志武, 朱玉龙, 等. 车-桥振动诱发周围环境及建筑物振动的分析[J]. 铁道学报, 2013, 35(4): 102-9.
ZHU Zhi-hui, YU Zhi-wu, ZHU Yu-long, et al. Analysis on environment and building vibration induced by passing trains on bridge structures[J]. Journal of The China Railway Society, 2013, 35(4): 102-9.
[3] 朱志辉, 余志武, 蒋丽忠, 等. 高速铁路桥梁及场地土交通振动分析[J]. 振动工程学报, 2012, 25(5): 548-55.
ZHU Zhi-hui, YU Zhi-wu, JIANG Li-zhong, et al. Analysis of bridge-ground vibrations induced by moving loads of high-speed train[J]. Journal of Vibration Engineering, 2012, 25(5): 548-55.
[4] 边学成. 高速列车荷载作用下高架桥和地基振动分析[J]. 振动工程学报, 2006, (04): 438-45.
BIAN Xue-cheng. Analysis of viaduct-ground vibrations due to high-speed train moving loads[J]. Journal of Vibration Engineering, 2006, (04): 438-45.
[5] Cao Y, Xia H, Li Z. A semi-analytical/FEM model for predicting ground vibrations induced by high-speed train through continuous girder bridge[J]. Journal of Mechanical Science & Technology, 2012, 26(8): 2485-96.
[6] Wu Y S, Yang Y B. A semi-analytical approach for analyzing ground vibrations caused by trains moving over elevated bridges[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(12): 949-62.
[7] 蒋通, 张昕. 高架轨道交通引起环境振动的实测与数值模拟[J]. 同济大学学报(自然科学版), 2004, 32(5): 565-9.
JIANG Tong, ZHANG Xin. In situ experimental and numerical predictions of environmental vibration by urban viaduct rail transit[J]. Journal of Tongji University (Natural Science Edition), 2004, 32(5): 565-9.
[8] 时瑾, 柴晓冬, 王英杰, 等. 高速列车运行引起的墩顶垂向动反力特征分析[J]. 同济大学学报:自然科学版, 2015, 43(2): 245-51.
SHI Jin, CHAI Xiao-dong, WANG Ying-jie, et al. Dynamic vertical reaction force of piers caused by train-bridge interaction on elevaed high-speed railway bridge[J]. Journal of Tongji University (Natural Science Edition), 2015, 43(2): 245-51.
[9] Lu F, Lin J H, Kennedy D, et al. An algorithm to study non-stationary random vibrations of vehicle–bridge systems[J]. Computers & Structures, 2009, 87(3): 177-85.
[10] 王贵春, 潘家英. 轨道不平顺导致的车桥耦合振动分析[J]. 铁道工程学报, 2006, (8): 30-3.
WANG Gui-chun, PAN Jia-ying. Analysis of vehicle-bridge coupled vibration due to track irregularities[J]. Journal of Railway Engineering Society, 2006, (8): 30-3.
[11] 夏禾. 车辆与结构动力相互作用[M]. City: 北京:科学出版社, 2002: 105-106,313-319.
XIA He. Dynamic interaction between vehicle and structure [M]. City:BenJing: Science Press, 2002: 105-106,313-319.
[12] Zhu Y, Li X, Jin Z. Three-dimensional random vibrations of a high-speed-train-bridge time-varying system with track irregularities[J]. Proceedings of the Institution of Mechanical Engineers Part F Journal of Rail & Rapid Transit, 2016.
[13] Yang S C, Hwang S H. Train-track-bridge interaction by coupling direct stiffness method and mode superposition method[J]. Journal of Bridge Engineering, 2016, 21(10).
[14] Guo W W, Xia H, Roeck G D, et al. Integral model for train-track-bridge interaction on the sesia viaduct: Dynamic simulation and critical assessment[J]. Computers & Structures, 2012, s 112–113(1): 205-16.
[15] 朱志辉, 王力东, 官斌, 等. 车致“站桥合一”大型客站的振动响应[J]. 中南大学学报(自然科学版), 2016, (1): 176-86.
ZHU Zhi-hui, WANG Li-dong, GUAN Bin,et al. Dynamic responses of “building-bridge integration” railway station induced by high-speed train[J]. Journal of Central South University (Natural Science Edition), 2016, (1): 176-86.
[16] 李小珍, 雷虎军, 朱艳, 等. 车-轨-桥动力系统中Rayleigh阻尼参数分析[J]. 振动与冲击, 2013, 32(21): 52-7.
    LI Xiao-zheng, LEI Hu-jun, ZHU Yan, et al. Analysis of rayleigh damping parameters in a dynamic system of vehicle-track-bridge[J].Journal of Vibration and Shock, 2013, 32(21): 52-7.
[17] Hong Y, Yang, Zhi J, et al. An Integrated coupling element for vehicle-rail-bridge interaction system with a non-uniform continuous bridge [J]. Acta Mechanica Solida Sinica, 2015, 28(3): 313-30.
[18] 朱志辉,王力东,龚威. 多种垂向轮轨关系的对比及改进的车-线-桥系统迭代模型的建立[J]. 中南大学学报(自然科学版), 2017, 48(6): 1-9.
ZHU Zhi-hui, WANG Li-dong, GONG Wei. Comparative analysis of several types of vertical wheel/rail relationship and an improved iteration model for train-track-bridge system[J]. Journal of Central South University (Natural Science Edition), 2017, 48(6): 1-9.
[19] 聂利英, 李建中, 范立础. 滑动支座竖向动反力对桥梁结构动力性能的影响[J]. 同济大学学报(自然科学版), 2002, 30(11): 1290-4.
NIE Li-ying, LI Jian-zhong, FAN Li-chu. Effects of dynamic vertical resistance force of sliding bearing of bridges[J]. Journal of Tongji University (Natural Science Edition), 2002, 30(11): 1290-4.
[20] 蒋通, 马超勇, 张昕. 弹性支承条件下车-桥体系的振动分析[J]. 力学季刊, 2004, 25(2): 256-63.
JIANG Tong, MA Chao-yong, ZHANG Xin. Dynamic analysis of train-bridge system with elastic supports[J]. Chinese Quarterly of Mechanics, 2004, 25(2): 256-63.
[21] 翟婉明, 夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京: 科学出版社,2011: 171-178.
ZHAI Wan-ming, XIA He. Train-track-bridge dynamic interaction theory and engineering application[M].Beijing: Science Press,2011: 171-178.
[22] 夏禾, 郭薇薇, 张楠. 车桥系统共振机理和共振条件分析[J]. 铁道学报, 2006, 28(5): 52-8.
XIA He, GUO Wei-wei, ZHANG Nan. Analysis of resonance mechanism and conditions of train-bridge system [J]. Journal of The China Railway Society, 2006, 28(5): 52-8.

PDF(2358 KB)

Accesses

Citation

Detail

段落导航
相关文章

/