FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用

程军圣 李梦君 欧龙辉 杨宇

振动与冲击 ›› 2018, Vol. 37 ›› Issue (15) : 27-32.

PDF(1006 KB)
PDF(1006 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (15) : 27-32.
论文

FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用

  • 程军圣 李梦君 欧龙辉 杨宇
作者信息 +

FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis

  • CHENG Junsheng,  LI Mengjun,  OU Longhui,  YANG Yu
Author information +
文章历史 +

摘要

针对变分模态分解(Variational mode decomposition, VMD)中难以确定分解分量个数k和惩罚参数α的问题。提出一种改进的变分模态分解方法—基于萤火虫算法及主模态分析法的变分模态分解(Variational mode decomposition based on firefly algorithm and Principle Mode Analysis,简称FA-PMA- VMD)方法。该方法首先用主模态分析(Principle Mode Analysis,简称 PMA)对VMD分解的带限内禀模态函数(Band-Limited Intrinsic Mode Function, 简称BIMF)分量进行排序;然后用萤火虫算法对变分模态分解的最佳影响参数[k,α]组合进行搜索,以新提出的正交低峰值作为萤火虫算法的优化目标,得到的最佳的惩罚参数α和分量个数k组合;最后根据预先设定的故障特征参数自适应地将信号分解为k个 BIMF分量。通过对仿真信号和齿轮齿根裂纹实际故障信号进行分析,分析结果表明FA-PMA- VMD具有良好的分解效果。
 

Abstract

Aiming at the decomposed components’ number k and the penalty parameter α in  the method of variational mode decomposition (VMD) being difficult to determine, an improved VMD method, based on the firefly algorithm (FA) and the principle mode analysis (PMD), named the method of FA-PMA-VMD was proposed. Firstly, the new method used PMA to sort band- limited intrinsic mode function (BIMF) components obtained with VMD. Then, FA was used to search the optimal influence parameter combination k and α in VMD with a new proposed orthogonal low peak value taken as the objective of FA, the optimal combination of k and α was gained. Finally, a signal was decomposed into k BIMF components adaptively with FA-PMA-VMD according to the preset fault characteristic parameters. The analysis results of simulated signals and actual fault signals of gear tooth root cracks showed that the proposed method of FA-PMA-VMD has a good decomposition effect.

关键词

变分模态分解 / 主模态分析 / 萤火虫算法 / 齿根裂纹 / 故障诊断

Key words

variational mode decomposition (VMD) / principle mode analysis (PMA) / firefly algorithm (FA) / gear tooth root crack / fault diagnosis

引用本文

导出引用
程军圣 李梦君 欧龙辉 杨宇. FA-PMA-VMD方法及其在齿根裂纹故障诊断中的应用[J]. 振动与冲击, 2018, 37(15): 27-32
CHENG Junsheng, LI Mengjun, OU Longhui, YANG Yu. FA-PMA-VMD method and its application in gear tooth root crack fault diagnosis[J]. Journal of Vibration and Shock, 2018, 37(15): 27-32

参考文献

[1] Hui Ma, Xu Pang, Ranjiao Feng, Rongze Song,Bang chun Wen. Fault features analysis of cracked gear considering the effects of the extended tooth contact [J]. Engineering Failure Analysis,2015,48:105-120.
[2] M. Amarnath, I.R. Praveen Krishna. Detection and diagnosis of surface wear failure in a spur geared system using EEMD based vibration signalanalysis [J]. Tribology International, 2013,61: 224-234.
[3]   C.Y. Yang, T.Y. Wu. Diagnostics of gear deterioration usin   -g EEMD approach and PCA process [J].Measurement,201   5,  61:75-87.
[4]   P. Flandrin, G. Rilling, P. Goncalves, Empirical mode deco   -mposition as a filter bank [J], IEEE Signal Process. Lett. 11 (2004) 112–114.
[5] Jinde Zheng, Junsheng Cheng,Yu Yang. Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing [J].Signal Processing, 2014,96: 362-374.
[6]   Konstantin. Dragomiretskiy, D. Zosso. Variational mode de  -composition [J], IEEE Trans. Signal Process. 62 (2014), pp.  531–544.
[7] Yanxue. Wang, Richard Markert. Filter bank property of variational mode decomposition and its applications [J], IEEE Trans. Signal Process. 120 (2016), pp. 509–521.
[8] Yanxue. Wang, Richard Markert. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system [J], Mechanical Systems and Signal Processing. 60-61 (2015), pp. 243–251.
[9] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 《西安交通大学学报》.2015,49(5):74-81.
Guiji Tang,Xiaolong Wang.Parameter Optimized Variationa-l Mode Decomposition Method with Applicatiom to Incipient Fault Diagnosis of Rolling Bearing [J],Journal of xi’an jiaotong university. 2015,49(5):74-81.
[10] Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.university. 2015,49(5):74-81.
[11] 李巍华,翁胜龙,张绍辉. 一种萤火虫神经网络及在轴承故障诊断中的应用[J]. 《机械工程学报》, 2015 (7) :99-106
LI Weihua WENG Shenglong ZHANG Shaohui . A Firefly Neural Network and Its Application in Bearing Fault Diagnosis[J], Journal of Mechanical Engineering.2015 (7) :99-106
[12] 吴小涛,杨 锰,袁晓辉,龚廷恺. 基于峭度准则 EEMD 及改进形态滤波方法的轴承故障诊断[J]. 《振动与冲击》, 2015 34(2) :38-44
WUXiaotao ,YANGMeng,YUANXiaohui , GONGTingkai. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis cri [J], Journal of Vibration and Shock.2015 34(2) :38-44
[13] 李巍华,翁胜龙. 基于 EEMD 的多尺度模糊熵的齿轮故障诊断[J]. 《振动与冲击》, 2015 34(14) :163-167
LI Weihua ,WENG Shenglong . Gear fault diagnosis based on multiscale fuzzy entropy of EEMD [J], Journal of Mechanical Engineering.2015  34(14) :163-167

PDF(1006 KB)

Accesses

Citation

Detail

段落导航
相关文章

/