针对EEMD算法在以往选取有效固有模态函数(IMF)时存在误判现象,提出了一种将EEMD与云相似度理论相结合的去噪方法。首先,通过构造连续声发射信号的仿真实验,并与互相关系数法选取固有模态函数作了比较,以信噪比和均方误差作为指标,验证了该方法能更好地提高信噪比;其次,利用改进EEMD算法对红砂岩声发射信号进行频率特征提取,结果表明:声发射信号分解的固有模态函数前三个IMF分量的云相似值较大,与其它分量的差值范围为0.346~0.906,经过多组实验统计分析选取阈值为0.655;最后,通过功率谱分析,将0~25KHZ对应于IMF4、IMF5、IMF6、IMF7、IMF8低频分量,25~150KHZ对应于IMF1、IMF2、IMF3高频分量,且红砂岩破裂过程的声发射信号的有效频段为25~150KHZ。
Abstract
In view of the fact that the ensenble empirical mode decomposition (EEMD) algorithm selects the effective intrinsic mode function (IMF) in the past, the phenomenon of misjudgment was considered.A de-noising method combining EEMD with cloud similarity theory was proposed.First, through the simulation experiment in which we constructed continuous acoustic emission signals and used the correlation coefficient method to select the intrinsic mode function compared with the signal-to-noise ratio and mean square error as the index, we verified that this method can improve the signal-to-noise ratio.Second, when we used the improved EEMD algorithm for frequency characteristics of the red sand rock acoustic emission, the signal extraction results showed that the acoustic emission signal was a decomposed intrinsic mode function.The first three IMF components have high cloud similarity value, with difference range of 0.346-0.906 from other components.The experimental statistical analysis to select the threshold is 0.655.Finally, we analyzed the power spectrum, 0-25 kHz, corresponding to IMF4, IMF5, IMF6, IMF7, IMF8 low frequency components; 25-150 kHz, corresponding to IMF1, IMF2, IMF3 high frequency components, and the red sandstone rupture of the effective frequency of the acoustic emission signals for 25-150 kHz.
关键词
声发射信号 /
EEMD /
云相似度 /
模拟仿真 /
功率谱
{{custom_keyword}} /
Key words
acoustic emission signal /
EEMD /
Cloud similarity /
Simulation /
Power spectrum
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]唐春安, 王述红, 傅宇方.岩石破裂过程数值实验[M].北京:科学出版社,2003.
Tang Chun-an, Wang Shu-hong, Fu Yu-fang. Numerical experiments of rock failure process [M]. Beijing: Science Press, 2003.
[2]沈功田, 戴光, 刘时风.中国声发射检测技术进展——学会成立25周年纪念[J]. 无损检测,2003, 25(6):302-307.
Shen Gong-tian, Dai Guang, Liu Shi-feng. Progress of acoustic emission testing technology in China -- Institute of founding 25th Anniversary Memorial [J]. nondestructive testing, 2003, 25 (6): 302-307.
[3]Li X J,Wang K,Wang G B,et al.Denoising of the Base Vibration Signal Based on EEMD [J].Appliced Mechancis and Materials,2011,143:689-693.
[4]Jing F,Zhu Z,Li W,et al.Robust Contion Monitoring and Fault diagnosis of rolling element bearing using improved EEMD and statistical features [J]. Measurement Science & Technology,2014,25(2):1-14.
[5]黄晓红, 李莎莎, 张艳博,等. 砂岩声发射信号的功率谱分析[J]. 矿业研究与开发, 2013(2):38-42.
Huang Xiao-hong, Li Sha-sha, Zhang Yan-bo, et al. Power spectrum analysis of acoustic emission signals of sandstone [J]. mining research and development, 2013 (2): 38-42.
[6]张艳博, 梁鹏, 孙林,等. 基于HHT的粉砂岩破裂声发射信号频率特性研究[J]. 采矿与安全工程学报, 2016, 33(1):179-184.
Zhang Yan-bo, Liang Peng, Sun Lin, et al. Study on frequency characteristics of acoustic emission signal of siltstone fracture [J]. HHT mining and safety engineering journal, 2016, 33 (1): 179-184.
[7]凌同华, 张胜, 易志强,等. 岩石声发射信号能量分布特征的EMD分析[J]. 振动与冲击, 2012, 31(11):26-31.
Ling Tong-hua, Zhang Sheng, Yi Zhi-qiang, et al. EMD analysis of energy distribution characteristics of rock acoustic emission signals [J]. vibration and shock, 2012, 31 (11): 26-31.
[8] Wu Z H,Huang N E. Ensemble empirical mode decomposition:A noise enhanced data analysis method [J].Advances in Adaptive Data Analysis,2009,1:1-41.
[9]张仕斌,许春香. 基于云模型的信任评估方法研究[J]. 计算机学报, 2013, 36(2):422-431.
Zhang Shi-bin, Xu Chun. Research on trust evaluation method based on cloud model [J]. proceedings of the Chinese society of computers, 2013, 36 (2): 422-431.
[10]李德毅,杜鹢,等. 不确定性人工智能[M]. 第二版.北京:国防工业出版社,2014:70-71.
Li Deyi, Du Yi, et al. The uncertainty of artificial intelligence [M]. second edition. Beijing: National Defense Industry Press, 2014:70-71.
[11]代劲, 宋娟, 胡峰, 等. 云模型与文本挖掘[M]. 北京:人民邮电出版社, 2013:64-65.
Dai Jin, Song Juan, Hu Feng, et al. Cloud model and text mining [M]. Beijing: People's post and Telecommunications Publishing House, 2013:64-65.
[12]D.Mitrakovic,I.Grabec,S.Sedmak.Simulation of AE Signals and Signal Analysis Systems [J].Ultrasonic,1985(9):227-232.
[13]Albert A-P,Nii A-O A Criterion for Selecting Relevant Intrinsic Mode Functions in Empirical Mode Decommposition[J].Advances in Adaptive Data Analysis,2010,2(1):1-24.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}