基于时域谱单元的三维压电耦合结构波传播分析

鱼则行, 徐超

振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 140-146.

PDF(1127 KB)
PDF(1127 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 140-146.
论文

基于时域谱单元的三维压电耦合结构波传播分析

  • 鱼则行, 徐超
作者信息 +

Time-domain spectral element method for 3-D wave propagation analysis of piezoelectric coupled structures#br#

  • YU Zexing,XU Chao
Author information +
文章历史 +

摘要

针对压电元件在结构健康监测领域的广泛应用,推导了一种三维压电耦合时域谱单元。考虑压电元件用作驱动器与传感器时两种不同的工况,分别用本文的谱单元方法和传统有限元法计算了弹性导波在压电耦合结构中的传播行为,以验证所本文方法的精度和效率;进一步开展了结构弹性波传播实验,实验验证了本文方法的有效性。结果表明:相较于传统有限元法,在波传播问题中,谱单元方法能够大大降低计算规模,提高运算速度;在模拟弹性导波的A0模式时,谱单元方法能够快速收敛到精确解;与实验结果的比较进一步验证了本文方法在三维压电耦合结构波传播问题模拟中的有效性。

Abstract

Piezoelectric actuators and sensors are widely applied in structural health monitoring (SHM).To simulate the elastic wave propagation in piezoelectric coupled structures, a 3-D piezoelectric coupled solid time-domain spectral element method (SEM) was proposed in this paper.The propagation of guided waves was analyzed in the cases in which the piezoelectric patches work as actuators or sensors by using the proposed method and the traditional finite element method (FEM).The experimental study was carried out to further validate the proposed SEM method.The results show that, compared to the FEM, the proposed SEM can reduce the computational cost and required memory space dramatically, and it has better convergence capability to simulate the A0 mode wave.The experimental work further validates the proposed method’s effectiveness.

关键词

压电耦合 / 时域谱单元 / 弹性波 / 结构健康监测

Key words

piezoelectric coupled structures / spectral element method / elastic wave / structural health monitoring

引用本文

导出引用
鱼则行, 徐超. 基于时域谱单元的三维压电耦合结构波传播分析[J]. 振动与冲击, 2018, 37(16): 140-146
YU Zexing,XU Chao. Time-domain spectral element method for 3-D wave propagation analysis of piezoelectric coupled structures#br#[J]. Journal of Vibration and Shock, 2018, 37(16): 140-146

参考文献

[1] Ostachowicz W. Guided waves in structures for SHM : the time-domain spectral element method[M]// Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method. 2011.
[2] 邓庆田. 压电杆结构的弹性动力学分析[D]. 湖南大学, 2008.
Deng Qingtian. Elastic Dynamics Analysis of Piezoelectric Rod Structure[D]. Hunan University, 2008.
[3] 李鹏. 压电复合结构中弹性波传播特性分析及其在高性能声波器件中的应用研究[D]. 西安交通大学, 2017.
Li Peng, Investigation of elastic waves propagation properties in Piezoelectric Composite Structures and Applications for Acoustic Wave Devices with High Performance[D]. Xi’an Jiaotong University, 2017.
[4] 杜朝亮, 魏建萍, 苏先樾. 压电/压磁层合板的频谱及瞬态弹性波[C]// 全国压电和声波理论及器件技术研讨会. 2006.
Du Chaoliang, Wei Jianping, Su Xianyue. Frequency and transient elastic wave of piezoelectric / piezomagnetic laminates [C]// National Piezoelectric and Acoustic Wave Theory and Device Technology Seminar. 2006.
[5] Wang S Y. A finite element model for the static and dynamic analysis of a piezoelectric bimorph[J]. International Journal of Solids and Structures, 2004, 41(15): 4075-4096.
[6] Ippolito S J, Kalantar-Zadeh K, Powell D A, et al. A 3-dimensional finite element approach for simulating acoustic wave propagation in layered SAW devices[C]//Ultrasonics, 2003 IEEE Symposium on. IEEE, 2003, 1: 303-306.
[7] Hofer M, Finger N, Kovacs G, et al. Finite-element simulation of wave propagation in periodic piezoelectric SAW structures[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53(6): 1192-1201.
[8] Shen Y, Giurgiutiu V. Predictive modeling of nonlinear wave propagation for structural health monitoring with piezoelectric wafer active sensors[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(4): 506-520.
[9] Lowe P S, Fateri S, Sanderson R, et al. Finite element modelling of the interaction of ultrasonic guided waves with coupled piezoelectric transducers[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2014, 56(9): 505-509.
[10] 郭君,张阿漫,杨文山,等.基于谱单元方法的平板冲击流固耦合研究[J].振动与冲击,2012,(02):81-85.
Guo Jun, Zhang Aman,Yang Wenshan et al. Research on the transient fluid-structure interaction with spectral element method[J]. Journal of Vibration and Shock, 2012,(02):81-85.
[11] Kudela P, Krawczuk M, Ostachowicz W. Wave propagation modelling in 1D structures using spectral finite elements[J]. Journal of Sound & Vibration, 2007, 300(1–2):88-100.
[12] KomatitschD, MartinR, TrompJ, et al. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. Journal of Computational Acoustics, 2001, 9(02): 703-718
[13] Peng H, Meng G, Li F. Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection[J]. Journal of Sound & Vibration, 2009, 320(4):942-954.
[14] 徐超, 王腾. 基于时域谱单元的功能梯度材料结构波传播分析[J]. 振动与冲击, 2015(13):18-23.
Xu Chao, Wang Teng. Wave Propagation Analysis For Functionally Graded Material Structures Using Time-domain Spectral Element Method[J]. Journal of Vibration and Shock, 2015(13):18-23.
[15] 冯朝辉,王鑫伟. 含压电谱单元及其在板结构中Lamb波传播模拟中的应用[J]. 中国机械工程,2014,(03):377-382.
Feng Chaohui, Wang Xinwei. spectral element with piezoelectric Patches and its application in simulation of Lamb wave propagation in plates[J]. China Mechanical Engineering, 2014,(03):377-382.
[16] 李富才, 彭海阔, 孙学伟,等. 基于谱元法的板结构中导波传播机理与损伤识别[J]. 机械工程学报, 2012, 48(21):57-66.
Li Fucai, Peng Haikuo, Sun Xuewei et al. Guided Wave Propagation Mechanism and Damage Detection in Plate Structures Using Spectral Element Method[J]. Journal of Mechanical Engineering, 2012, 48(21):57-66.
[17] Brunner A J, Barbezat M, Huber C, et al. The potential of active fiber composites made from piezoelectric fibers for actuating and sensing applications in structural health monitoring[J]. Materials and structures, 2005, 38(5): 561-567.
[18] Kim Y, Ha S, Chang F K. Time-Domain Spectral Element Method for Built-In Piezoelectric-Actuator-Induced Lamb Wave Propagation Analysis[J]. Aiaa Journal, 2012, 46(3):591-600.

PDF(1127 KB)

Accesses

Citation

Detail

段落导航
相关文章

/