海浪是海洋环境中最为复杂的自然现象,其时空概率分布具有较大的随机性。随着船舶制造吨位、尺度的加大,以及船型的复杂化,船体总振动频率不断降低,以致与波浪激励力频率逐步靠近,进而带来了较为严重的波激振动问题。目前,主要从线性和非线性的角度对波激振动进行研究,已有的线性理论往往难以解释低频激励诱发的船舶高频波激振动现象。从引起波激振动激励的源头出发,指出有限幅波理论中含有高阶分量,在独立于船型情况下能有效地解释船舶在波浪中产生高阶振动的激励力来源;推导了受航速、航向、波高、波频等因素影响下的波浪激励力表达式,同时指出了评估波浪参数的决定方法。利用虚拟质量法完成了双体船流固耦合波激振动响应计算,对比了该船在不同波频参与激励下,船体振动响应的差异。结果表明:有限幅波中高阶成分可对船舶产生高频激励,微幅波理论在研究船舶高频振动方面具有一定的局限性。
Abstract
Waves are the most complicated natural phenomena in marine environments because their space-time probability distributions are largely random.With the steady increase of ships’ tonnages and scales along with their complexity, their hulls’ total vibration frequencies are decreasing and gradually closing the frequency of wave excitation forces, thereby causing a more serious wave vibration problem.At present, wave vibration is mainly discussed from linear and non-linear perspectives.With existing linear theory, it is often difficult to explain the high frequency excitation ship-induced wave vibration phenomenon.From the source of the wave excitation, it was pointed out that the finite-amplitude wave theory contains high-order components, which could effectively explain how a ship produces high-order vibration excitation without considering the type of ship.The expression of the wave excitation force under the influence of speed, heading, wave height and wave frequency was deduced.At the same time, the method of determining the wave parameters was established.The response of the catamaran’s fluid-solid coupling wave excitation was completed by using the virtual mass method and comparison of the various ships’ vibration responses under various wave frequency participation.The results show that the high-order component of the finite-amplitude wave can produce high-frequency excitation to the ship.The theory of micro-waves has some limitations in the study of high-frequency vibrations of ships.
关键词
有限幅波 /
非线性 /
波激振动 /
高频 /
小水线面双体船
{{custom_keyword}} /
Key words
limited amplitude wave /
non-linear /
wave vibration /
high frequency /
small waterplane surface catamaran
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中国船级社GD 01-2015. 波激振动和砰击颤振对船体结构疲劳强度影响计算指南[M]. 人民交通出版社, 2015.
[2] 汪雪良,顾学康,胡嘉骏. 船舶波激振动研究进展[J]. 船舶力学, 2013, 17(7): 830-844.
WANG Xue-liang, GU Xue-kang, HU Jia-jun. A state-of-the-art review on ship’s springing investigation [J]. Journal of Ship Mechanics, 2013,17(7):830-844. (in Chinese)
[3] J Jensen-J. Stochastic procedures for extreme wave load predictions-wave bending moment in ships[J]. Marine Structures, 2009, 22: 194-208.
[4] 钱小斌,尹勇,张秀凤,等. 海上不规则波浪扰动对船舶运动的影响[J]. 交通运输工程学报, 2016, 16(3): 116-124.
QIAN Xiao-bin, YIN Yong, ZHANG Xiu-feng, etal. Influence of irregular disturbance of sea wave on ship motion[J]. Journal of Traffic and Transportion Engineering, 2016, 16(3): 116-124. (in Chinese)
[5] Taylor R E, Hung S M. Second order diffraction forces on a vertical cylinder in regular waves[J]. Applied Ocean Research , 1987,9:19-30.
[6] 贺五洲,陈炜. Stokes波在铅垂圆柱上绕射的二阶分析[J]. 工程力学, 2004, 21(6): 177-182.
HE Wu-zhou, CHEN Wei. Second order analysis of diffraction of Stockes waves by a vertical cylinder[J]. Engineering Mechanics, 2004, 21(6): 177-182. (in Chinese)
[7] Troesch A W. Effects of nonlinearities on hull springing[J]. Marine Technology, 1984, 21(4): 356-363.
[8] Gu X K, Shen J W, Moan T. Experimental and theoretical investigation of higher order harmonic components of nonlinear bending moments of ships[J]. Journal of Ship Technology Research, Schiffstechnik, 2000, (4): 143-154.
[9] He H P, Troesch A W, Shin Y S, Kim B K. Springing analysis of elastic vessels in head and oblique seas including non-linear effects due to second order diffraction pressures[C]. The 23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004: 253-259.
[10] 顾学康, 胡嘉骏. 超大型油船模型波浪载荷试验报告[R]. 无锡: 中国船舶科学研究中心科技报告, 2004.
[11] 马广宗等. 船舶振动与实用计算[M]. 北京: 人民交通出版社, 1981: 451-459.
[12] 文圣常,余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1985: 95-101.
[13] 叶永林,席亦农,尤国红, 等. 小水线面双体船总振动计算与试验研究[J]. 中国造船, 2011, 52(4): 56-65.
YE Yong-lin, XI Yi-nong, YOU Guo-hong, et al. Overall vibration calculation and test for SWATH ship [J]. Shipbuilding of China, 2011.12,52(4),56-65. (in Chinese)
[14] 唐宇航,陈志坚,张佳栋. 基于数值试验的波浪载荷激励船舶振动响应研究[J]. 振动与冲击, 2016, 35(22): 114-122.
TANG Yu-hang, CHEN Zhi-jian, ZHANG Jia-dong. Vibration response of ships under wave load based on numerical experiment[J]. Journal of Vibration and Shock, 2016, 35(22): 114-122. (in Chinese)
[15] 夏齐强,陈志坚. 波浪载荷与砰击载荷联合作用下SWATH船结构动态响应[J]. 上海交通大学学报, 2012, 46(3): 352-357.
XIA Qi-qiang, CHEN Zhi-jian. Study on dynamic response of SWATH structure subjected to wave loads and slamming loads[J]. Journal of Shanghai Jiaotong University, 2012, 46(3): 352-357. (in Chinese)
[16] 陈志坚. 船艇振动学[M]. 北京:国防工业出版社. 2010.4, 229-230.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}