时间尺度上二阶Emden-Fowler型延迟动态方程的振动性

杨甲山1,2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 154-161.

PDF(740 KB)
PDF(740 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 154-161.
论文

时间尺度上二阶Emden-Fowler型延迟动态方程的振动性

  • 杨甲山1,2
作者信息 +

Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales

  • YANG Jiashan1,2
Author information +
文章历史 +

摘要

研究了时间尺度上一类二阶非线性中立型阻尼Emden-Fowler型延迟泛函动态方程的振动性,利用时间尺度上的微积分理论和广义的Riccati变换、Yang不等式、Hölder不等式以及一些分析技巧,在两种情形下建立了该方程的几个新的振动准则,所得结果充分反映了阻尼项和中立项在系统振动中的影响作用,所举例子说明,这些准则不仅推广并改进了一些已有的结果,而且具有较好的实用性和可操作性.

Abstract

We studied the oscillatory behavior of a certain class of second-order nonlinear neutral damped Emden-Fowler-type delay functional dynamic equations on time scales.By using the calculus theory on time scales and the generalized Riccati transformation, Yang’s inequality, Hlder’s inequality and mathematical analytic methods, we established some new oscillation criteria for the equations in two cases.The results fully reflect the influential actions of damping terms and neutral terms in system oscillation.The illustrative examples show that our results extend and improve those reported in the literature and that they have practicability and maneuverability.

关键词

振动性 / Emden-Fowler型动态方程 / 时间尺度 / 阻尼项 / 延迟项

Key words

oscillation / Emden-Fowler-type dynamic equations / time scales / damping term / delay term

引用本文

导出引用
杨甲山1,2. 时间尺度上二阶Emden-Fowler型延迟动态方程的振动性[J]. 振动与冲击, 2018, 37(16): 154-161
YANG Jiashan1,2. Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales[J]. Journal of Vibration and Shock, 2018, 37(16): 154-161

参考文献

[1] AGARWAL R P, BOHNER M, LI W T.Nonoscillation and oscillation: Theory for functional differential equations[M].New York:Marcel Dekker,2004.
[2] BOHNER M, PETERSON A. Dynamic equations on time scales,an introduction with applications[M]. Boston : Birkhauser, 2001.
[3] SAKER S H, AGARWAL R P,O’REGAN D. Oscillation of second-order damped dynamic equations on time seales[J].J Math Anal Appl, 2007,330:1317-1337.
[4] ERBE L,HASSAN T S,PETERSON A.Oscillation criteria for nonlinear damped dynamie equations on time scales[J]. Apple Math Comput,2008,203:343-357.
[5] CHEN W, HAN Z, SUN S, LI T. Oscillation behavior of a class of second-order dynamic equations with damping on time scales[J]. Discrete Dyn Nat Soc, 2010,1-15.
[6] 张全信,高丽.时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则[J].中国科学(数学),2010, 40(7): 673-682.
ZHANG Quanxin, GAO Li. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J]. Sci Sin Math, 2010, 40(7): 673-682.
[7] ZHANG Q X. Oscillation of second-order half-linear delay dynamic equations with damping on time scales[J].Journal of Computational and Applied Mathematics, 2011,235:1180-1188.
[8] 张全信,高丽,刘守华.时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(II)[J].中国科学:数学,2011,41(10): 885-896.
ZHANG Quanxin,GAO Li,LIU Shouhua.Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J]. Sci Sin Math,2011,41(10):885-896.
[9] 张全信,高丽,刘守华.时间尺度上具阻尼项的二阶半线性时滞动力方程振动性的新结果[J].中国科学:数学,2013,43(8): 793-806.
ZHANG Quanxin,GAO Li,LIU Shouhua.Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales[J].Sci Sin Math,2013,43(8):793-806.
[10] 孙一冰,韩振来,孙书荣,等.时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性[J].应用数学学报, 2013,36(3):480-494.
SUN Yibing,HAN Zhenlai,SUN Shurong,et al. Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales[J]. Acta Mathematicae Applicatae Sinica, 2013,36(3):480-494.
[11] Li T X,Han Z L,Zhang C H,et al. On the oscillation of second-order Emden-Fowler neutral differential equations[J]. J Appl Math Comput,2011,37:601–610.
[12] TUNA A,KUTUKCU S.Some integral inequalities on time scales[J].Applied Mathematics and Mechanics,2008,29(1): 23-29.
[13] 杨甲山.时间测度链上一类二阶Emden-Fowler型动态方程的振荡性[J].应用数学学报,2016,39(3): 334-350. 2016-06-28
YANG Jiashan.Oscillation for a class of second-order emden-fowler dynamic equations on time scales[J].Acta Mathematicae Applicatae Sinica,2016,39(3):334-350.
[14] GRACE S R, BOHNER M, AGARWAL R P. On the oscillation of second-order half-linear dynamic equations[J]. J Difference Equ Appl,2009,15:451-460.
[15] HASSAN T S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales[J].Appl Math Comput,2011,217:5285-5297.
[16] Yang J S,Li T X. A Philos-type theorem for second-order neutral delay dynamic equations with damping[J].Advances in Difference Equations,2016,2016:44.
[17] GÜVENILIR A F,NIZIGIYIMANA F.Oscillation criteria for second-order quasi-linear delay dynamic equations on time scales[J]. Advances in Difference Equations,2014,2014:45.
[18] BOHNER M. Some oscillation criteria for first order delay dynamic equations[J]. Far East J Appl Math, 2005, 18: 289-304.

PDF(740 KB)

Accesses

Citation

Detail

段落导航
相关文章

/