基于模态叠加法的大型风力机典型工况动态特性分析

曹莉, 孙文磊,周建星

振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 185-189.

PDF(1878 KB)
PDF(1878 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 185-189.
论文

基于模态叠加法的大型风力机典型工况动态特性分析

  • 曹莉, 孙文磊,周建星
作者信息 +

A study on dynamic characteristics of wind turbines under complex conditions based on the modal superposition method

  •  CAO Li   SUN Wenlei  ZHOU Jianxing
Author information +
文章历史 +

摘要

为提高复杂多变工况下风力机工作性能和使用寿命,建立风力机动态特性计算模型,采用了基于模态叠加法的风力机动态特性计算方法,并对2MW大型风力机在启动、正常停机、湍流、阵风等典型工况下进行动态特性分析,总结了在不同工况下风力机的动态特性。结果表明:在极端运行阵风作用下风力机的动态特性最为明显,叶尖处的最大动响应的最大值相对于其稳态振幅均值反向增加了359.78%,塔架顶部的最大动应力的最大值相对于稳态应力均值增加了357.63%,该结果为风力机系统进一步优化设计与提高其运行效率及安全性提供了理论依据。

Abstract

Since the running environment of wind turbines is variable, wind-generating sets are subject to frequent disturbances and dynamic load excitations, resulting in strong vibrations, which are detrimental to the turbines’ operating performance and service life.Therefore, it is necessary to analyze their dynamic characteristics in various conditions.We did so by building computer models and adopting a computational method to calculate wind turbines’ dynamic characteristics in conditions of start-up, normal stop, turbulence, gusts, etc.We then applied the dynamic characteristics under various conditions.The results show that the wind turbine produced a huge transverse vibration under a transient forcing-flurry.The blade tip’s max displacement response is intensified up to 359.78% under a transient forcing-flurry, which was compared with the mean amplitude under the steady state.The max Von Mises stress at the top of tower is increased by 357.63% in reverse under a transient forcing-flurry, which was compared with the mean stress under the steady state, which should be given great attention in design.The results provide a useful theoretical basis for more optimal design of wind turbines.

关键词

风力机 / 动态特性 / 模态叠加法 / 阵风 / 复杂工况

Key words

wind turbine / dynamic characteristics / modal superposition / gust / complex conditions

引用本文

导出引用
曹莉, 孙文磊,周建星. 基于模态叠加法的大型风力机典型工况动态特性分析[J]. 振动与冲击, 2018, 37(16): 185-189
CAO Li SUN Wenlei ZHOU Jianxing. A study on dynamic characteristics of wind turbines under complex conditions based on the modal superposition method[J]. Journal of Vibration and Shock, 2018, 37(16): 185-189

参考文献

[1] Marin J C, Barroso A, Paris F, et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis,2009,16(2):656-668.
[2] 何婧,何玉林,金鑫,等.失速型风力发电机系统振动仿真分析[J].重庆大学学报(自然科学版),2007,30(5):91-95.
HE Jing, HE Yu-ling, JIN Xing, et al. Vibration analysis and system simulation for a stalled wind turbine[J]. Journal of Chongqing University(Natural Science Edition), 2007,30(5):91-95.(in Chinese)
[3] 莫文威,李德源,夏鸿建,吕文阁. 水平轴风力机柔性叶片多体动力学建模与动力特性分析[J]. 振动与冲击,2013,22:99-105.
MO Wen-wei, LI De-yuan, XIA Hong-jian, LV Wen-ge. Multibody dynamic modeling and dynamic characteristics analysis of flexible blades for a horizontal axis wind turbine [J]. Journal of Vibration and Shock, 2013,22:99-105. (in Chinese)
[4] Molenaar D P.Cost-effective design and operation of variable speed wind turbines[D].Ph.D.Thesis: Delft University of Technology,2003.
[5] Tony Burton, David Sharpe, Nick Jenkins, et al. Wind energy handbook [M]. New York: John Wiley & Sons, 2005.
[6] 徐磊,李德源,莫文威,吕文阁,刘雄. 基于非线性气弹耦合模型的风力机柔性叶片随机响应分析[J]. 振动与冲击,2015,34(10):20-27.
XU Lei,LI Yuan-de,MO Wenwei,LV Wen-ge,LIU Xiong.Random response analysis for flexible blade of a wind turbine based on nonlinear aero-elastic coupled model[J]. Journal of Vibration and Shock,2015,34(10):20-27. (in Chinese)
[7] Mohammad-Amin Asareh, William Schonberg, Jeffery Volz. Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines[J]. Renewable Energy,2016,86:49-58.
[8] 刘雄,李刚强,陈严,叶枝全.水平轴风力机叶片动态响应分析[J].机械工程学报,2010,12:128-134+141.
LIU Xiong, LI Guang-qiang, CHEN Yan, YE Zhi-quan. Dynamic response analysis of the blade of horizontal axis wind turbines[J]. Journal of Mechanical Engineering,2010,12:128-134+141. (in Chinese)
[9] 吕计男,刘子强,赵 玲,冉景洪.大型风力机气动弹性响应计算研究[J].空气动力学学报,2012,01:125-129.
LV Ji-nan, LIU Zi-qiang, ZHAO Ling, RAN Jing-hong. Large-scale wind turbine aeroelastic responses analysis[J]. Acta Aerodynamica Sinica,2012,01:125-129. (in Chinese)
[10] 李明,田德,王海宽,韩巧丽,马广兴. 变桨距风力发电机组叶片模型的载荷测试实验[J]. 太阳能学报,2013,09:1574-1578.
LI Ming, TIAN De, WANG Hai-kuan, HAN Qiao-li, MA Guang-xing. Load test experiment of variable pitch wind turbine rotor blade model[J]. Acta Energiae Solaris, 2013,09:1574-1578. (in Chinese)
[11] Ackermann Thomas. Wind power in power system [M]. UK. John Wiley & Sons Ltd, 2005:31-65.
[12] 刘雄,李刚强,陈严,叶枝全.水平轴风力机叶片动态响应分析[J].机械工程学报,2010,12:128-134+141.
LIU Xiong, LI Guang-qiang, CHEN Yan, YE zhi-quan. Dynamic response analysis of the blade of horizontal axis wind turbines[J]. Journal of Mechanical Engineering,2010,12:128-134+141. (in Chinese)
[13] 王勖成.有限元法[M].北京:清华大学出版社,2003.
WANG Xu-cheng.Finite element method[M].Beijing:Tsinghua University Press,2003. (in Chinese)
[14] 柯世堂,王同光,曹九发,王珑. 海上风力机随机风场模拟及风振响应分析[J]. 中南大学学报(自然科学版),2016,47(04):1245-1252.
KE Shi-tang, WANG Tong-guang, CAO Jiu-fa, WANG Long. Simulation of stochastic wind field and wind-induced responses of offshore wind turbines[J].Journal of Central     South University: Science and Technology,2016,47(04):1245-1252. (in Chinese)
[15] Roberts E.Wilson,Peter B.S. Lissaman.Applied aerodynamics of wind power machines[M].Oregon State University Corvallis,1974.
 

PDF(1878 KB)

Accesses

Citation

Detail

段落导航
相关文章

/