锁定状态下一维可展桁架球铰连接刚度识别

周李真辉1,2,曹芝腑1,姜 东1,3,董萼良2,费庆国1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 219-226.

PDF(1832 KB)
PDF(1832 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 219-226.
论文

锁定状态下一维可展桁架球铰连接刚度识别

  • 周李真辉1,2 ,曹芝腑1,姜 东1,3,董萼良2,费庆国1
作者信息 +

Stiffness identification of the spherical hinge of locked 1D deployable truss

  • ZHOU Lizhenhui1,2, CAO Zhifu1, JIANG Dong1, 3, DONG Eliang2, FEI Qingguo1
Author information +
文章历史 +

摘要

针对某一维可展桁架的球形铰链连接,利用动力学模型修正方法识别了了其连接刚度特性。将可展结构进行简化处理,使其处于展开锁定状态,单独考虑铰链刚度。首先对锁定后的展开单元进行精细化有限元建模,利用接触分析方法,得到球铰连接等效线性刚度初值。其次,建立展开单元的参数化模型,并采用六向刚度弹簧单元对球铰连接进行等效线性处理。然后对锁定状态下的可展开结构单元进行模态测试,利用试验模态参数识别球铰的连接刚度。最后将识别的连接刚度值带入由三个展开单元组成的一维可展桁架,通过与试验模态数据对比验证了识别结果的准确性。研究结果表明,利用本文的基于动力学模型修正的空间可展开结构球铰连接刚度识别方法,能够准确识别球铰连接刚度,建立准确的动力学分析模型。

Abstract

For the spherical hinge’s connection of a 1D deployable truss, the stiffness of the spherical hinge was investigated based on dynamic model updating.The deployable structure was simplified to be in locked condition, considering the stiffness of the spherical hinge only.First, we established the elaborate FEM of a locked truss unit and calculated the initial stiffness values by carrying out the contact analysis.Then we substituted the initial value with the parameterized model with six-directional stiffness spring elements linearizing the spherical hinges’ connection.Afterward, we carried out the modal tests for this locked truss unit, using these modal parameters to identify the spherical hinge’s stiffness.Finally, we utilized the identified stiffness for the finite element modeling of the deployable structure and verified the identified results by using the multi-layer’s modal parameters.The results show that the stiffness identification method of the spherical hinge based on dynamic model updating presented by this paper is effective.

关键词

可展开结构 / 球形铰链 / 接触分析 / 模型修正 / 刚度识别

Key words

deployable mast / spherical hinge / contact analysis / model updating / stiffness identification

引用本文

导出引用
周李真辉1,2,曹芝腑1,姜 东1,3,董萼良2,费庆国1. 锁定状态下一维可展桁架球铰连接刚度识别[J]. 振动与冲击, 2018, 37(16): 219-226
ZHOU Lizhenhui1,2, CAO Zhifu1, JIANG Dong1, 3, DONG Eliang2, FEI Qingguo1. Stiffness identification of the spherical hinge of locked 1D deployable truss[J]. Journal of Vibration and Shock, 2018, 37(16): 219-226

参考文献

[1] Ling Y, Song A, Lu W. A novel rigid–flexible combined sampler for lunar exploration[J]. Mechanism and Machine Theory, 2014, 77(7): 25-34.
[2] Meguro A, Shintate K, Usui M, et al. In-orbit deployment characteristics of large deployable antenna reflector onboard Engineering Test Satellite VIII[J]. Acta Astronautica, 2009, 65(9): 1306-1316.
[3] Shan M, Guo H, Liu R, et al. Design and analysis of a triangular prism modular deployable mast[C]//2013 IEEE International Conference on Mechatronics and Automation. IEEE, 2013: 1546-1551.
[4] Puig L, Barton A, Rando N. A review on large deployable structures for astrophysics missions[J]. Acta Astronautica, 2010, 67(1): 12-26.
[5] Johnson L, Whorton M, Heaton A, et al. NanoSail-D: A solar sail demonstration mission[J]. Acta Astronautica, 2011, 68(5): 571-575.
[6] 苏斌, 关富玲, 石卫华, 等. 索杆式伸展臂的结构设计与分析[J]. 工程设计学报, 2003, 10(5): 287-294.
SU Bin, GUAN Fu-ling, SHI Wei-hua, et al. Design and analysis of rod-cable deployable mast[J]. Journal of Engineering Design, 2003, 10(5):287-294.
[7] 宋伟力, 杨炳渊. 舵面-液压伺服机构连接刚度参数辨识[J]. 上海航天, 1998(5):9-13.
SONG Wei-Li, YANG Bing-Yuan. Parameter Identification of Joining Stiffness of Rudder Hydraulic Servo Mechanism[J]. Aerospace Shanghai, 1998(5):9-
[8] 杨炳渊, 宋伟力, 阳华, 等. 太阳电池阵板间铰链副刚度参数辨识[J]. 振动与冲击, 2000, 19(1): 12-14.
YANG Bing-yuan, SONG Wei-li, YANG Hua, et al. THE STIFFNESS PARAMETER IDENTIFICATION OF HINGE ON SOLAR ARRAY[J]. Journal of Vibration & Shock, 2000, 19(1): 12-14.
[9] 吴远波, 杜江华. 太阳电池阵铰链机构刚度等效方法[J]. 航天器环境工程, 2010, 27(4): 467-471.
WU Yuan-bo, DU Jiang-hua. Stiffness equivalent method for the hinge mechanism of solar cell array[J]. Spacecraft Environment Engineering, 2010, 27(4): 467-471.
[10] 邱丽芳, 韦志鸿, 徐金梧. 新型平面折展机构柔性铰链等效刚度分析[J]. 机械工程学报, 2014, 50(17): 25-30.
QIU Li-fang, WEI Zhi-hong, XU Jin-wu. Analysis of Equivalent Stiffness of New LEMs Flexure Hinge[J]. Journal of Mechanical Engineering, 2014, 50(17):25-30.
[11] Li W L. A new method for structural model updating and joint stiffness identification[J]. Mechanical Systems and Signal Processing, 2002, 16(1): 155-167.
[12] Fasse E D. A finite-element-based method to determine the spatial stiffness properties of a notch hinge[J]. Journal of Mechanical Design, 2001, 123: 141-147.
[13] Lobontiu N, Garcia E, Hardau M, et al. Stiffness characterization of corner-filleted flexure hinges[J]. Review of scientific instruments, 2004, 75(11): 4896-4905.
[14] Friswell M I, Mottershead J E, Ahmadian H. Combining Subset Selection and Parameter Constraints in Model Updating[J]. Journal of Vibration & Acoustics, 1998, 120(4):854-859.
[15] Friswell M I, Garvey S D, Penny J E T. THE CONVERGENCE OF THE ITERATED IRS METHOD[J]. Journal of Sound & Vibration, 1998, 211(1):123-132.
[16] Friswell M I, Mottershead J E, Ahmadian H. Finite-Element Model Updating Using Experimental Test Data: Parametrization and Regularization[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2001, 359(1778):169.
[17] Friswell M I, Inman D J, Pilkey D F. Direct Updating of Damping and Stiffness Matrices[J]. Aiaa Journal, 2012, 36(3):491-493.
[18] 费庆国, 张令弥, 李爱群,等. 基于统计分析技术的有限元模型修正研究[J]. 振动与冲击, 2005, 24(3):23-26.
FEI Qing-Guo, ZHANG Ling-Mi, LI Ai-Qun, et al. FINITE ELEMENT MODEL UPDATING USING STATISTICS ANALYSIS[J]. Journal of Vibration & Shock, 2005,24(3):23-26.
[19] 费庆国, 李爱群, 张令弥. 基于神经网络的非线性结构有限元模型修正研究[J]. 宇航学报, 2005, 26(3):267-269.
FEI Qing-Guo, LI Ai-Qun, ZHANG Ling-Mi. Study on finite element model updating of nonlinear structures using neural network[J]. Journal of Astronautics, 2005,26(3):267-269.
[20] 费庆国, 张令弥, 李爱群,等. 基于不同残差的动态有限元模型修正的比较研究[J]. 振动与冲击, 2005, 24(4):24-26.
FEI Qing-Guo, ZHANG Ling-Mi, LI Ai-Qun, et al. EVALUATION OF FE MODEL UPDATING USING FOUR KINDS OF RESIDUES[J]. Journal of Vibration & Shock, 2005, 24(4):24-26.
[21] 姜东, 费庆国, 吴邵庆. 基于摄动法的不确定性有限元模型修正方法研究[J]. 计算力学学报, 2014(4):431-437.
JIANG Dong, FEI Qing-Guo, WU Shao-Qing. A study on stochastic finite element model updating based on perturbation approach[J]. Jisuan Lixue Xuebao/chinese Journal of Computational Mechanics, 2014, 31(4):431-437.
[22] 姜东, 吴邵庆, 史勤丰,等. 基于薄层单元的螺栓连接结构接触面不确定性参数识别[J]. 工程力学, 2015, 32(4):220-227.
JIANG Dong, WU Shao-Qing, SHI Qin-Feng, et al. Contact interface parameter identification of bolted joint structure with uncertainty using thin layer element method[J]. Engineering Mechanics, 2015, 32(4):220-227.
[23] 宋彦国, 张呈林, 杨炳渊. 一种识别复杂连接结构刚度参数的实用方法[J]. 振动工程学报, 2002, 15(3): 323-326.
SONG Yan-guo, ZHANG Cheng-lin, YANG Bing-yuan. A Practical Method to Identify Stiffness Parameters of Complex Joint Elements[J]. Journal of Vibration Engineering, 2002, 15(3):323-326.
[24] 常涛, 郭勤涛, 张保强. 应用模型修正方法的印制电路板参数识别[J]. 振动、测试与诊断, 2013, 33(3):509-513.
CHANG Tao, GUO Qin-Tao, ZHANG Bao-Qiang. Identification of Physical Parameters of Printed Circuit Board Based on Model Updaing Mehtod[J]. Zhendong Ceshi Yu Zhenduan/journal of Vibration Measurement & Diagnosis, 2013, 33(3):509-513.

PDF(1832 KB)

Accesses

Citation

Detail

段落导航
相关文章

/