按照De Hoop的方法,通过三维解答的积分得到集中力作用下饱和多孔介质U-P形式的二维Green函数,利用耦合纵波的解耦及分波类型的奇异点处理,完成了集中力 作用下半空间多孔介质动力响应的BEM计算,通过Duhamel公式积分分别给出了在输入EI Centro和2008年汶川地震加速度记录后的饱和土隧道的地震响应计算。研究结果表明:隧道的地震放大作用明显;EI Centro或汶川2008地震记录作用下,隧道底部的响应均要大于中间和顶部的响应。
Abstract
In accordance with De Hoop's suggestion, 2-D Green's function in U-P formation for a saturated porous medium subjected to a concentrated force has been derived via its 3-D form's integration, Using the decoupling of coupled longitudinal wave and singular point processing of wavelet type, BEM calculation of porous media dynamic response in half space subjected to a concentrated force was derived.After EI Centro and Wenchuan 2008 earthquake acceleration records were input into the Duhamel formula integral, respectively, the seismic response of the saturated soil tunnel was proposed.The results show that, the seismic magnification response of the tunnel is obvious.Under the action of EI Centro or Wenchuan 2008 earthquake record, the response at the bottom of the tunnel is greater than the middle and the top.
关键词
饱和多孔介质 /
U-P形式 /
二维Green函数 /
BEM数值方法 /
隧道地震响应
{{custom_keyword}} /
Key words
Saturated porous medium /
U-P formulation /
2-D Green’s function /
BEM numerical method /
Seismic response of a tunnel
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Das S, Aki K. A numerical study of two-dimensional spontaneous rupture propagation [J]. Geophysical Journal International, 1977, 50: 643-668.
[2] 丁伯阳,党改红,袁金华. Green函数对饱和土隧道内集中荷载作用振动位移反应的计算[J]. 振动与冲击,2009, 28(11): 110-114.
Ding Bo-yang, Dang Gai-hong, Yuan Jin-hua. The solution of Green function for the displacement response of the saturated soil tunnel by concentrated load [J]. Journal of vibration and shock, 2009, 28(11): 110-114.
[3] 党改红,丁伯阳,袁金华等. 饱和土中伴有排水问题爆炸场动力反应Green函数计算[J]. 振动与冲击,2012, 31(9): 102-106.
Dang Gai-hong, Ding Bo-yang, Yuan Jin-hua, et al. Green’s function for calculation to the dynamic response of the explosion field with drainage in saturated soil [J]. Journal of vibration and shock, 2012, 31(9): 102-106.
[4] Bierer T, Bode C. A Semi-analytical model in time domain for moving loads[J]. Soil Dynamics & Earthquake Engineering, 2007,12 (27):1073-1081.
[5] 丁伯阳,陈军,潘晓东. 饱和多孔介质中Lamb问题的Green函数解答[J]. 力学学报,2011, 43(3): 533-541.
Ding Boyang, Chen Jun, Pan Xiaodong. The solutions of Green’s function for Lamb’s problem in a two-phase saturated medium [J]. Chinese journal of theoretical and applied mechanics, 2011, 43(3): 533-541.
[6] Hoop A T D. The surface line source problem[J]. Applied Sciences Research, 1958, 4(B8): 349-356.
[7] Manolis G D. A comparative study on three boundary element approaches to problems in elastodynamics[J]. International Journal for Numerical Methods in Engineering, 1983, 19: 73-91.
[8] Chen J. Time Domain fundamental solution to Biot’s complete equations of dynamic poroelasticity PartⅡ[J]. International Journal of Solids & Structures, 1994, 31(2): 169-202.
[9] 丁伯阳,樊良本,吴建华. 两相饱和介质中的集中力点源位移场解与应用[J]. 地球物理学报,1999, 42(6): 800-808.
Ding Boyang, Fan Liangben, Wu Jianhua. The Green function and wave field on two-phase saturated medium by concentrated force. [J]. Chinese Journal Geophysics, 1999, 42(6): 800-808
[10] Ding B Y, Alexander H D Cheng, Chen Zh L. Fundamental solutions of poroelasto dynamics in frequency domain based on wave decomposition[J]. Journal of Applied Mechanics, 2013, 80: 061021(1)-061021(12).
[11] Biot M A. Theory of propagation of elastic wave in a fluid-saturated soil[J]. Journal of the Acoustical Society of America, 1956, 28: 168-178.
[12] Biot M A. Generalized theory of acoustic propagation in porous dissipative medium[J]. Journal of the Acoustical Society of America, 1962, 34: 1254-1264.
[13] Johnson D L, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media[J]. Journal of Fluid Mechanics, 1987, 176: 379-402.
[14] Bonnet G. Basic singular solutions for a poroelastic medium in the dynamic range[J]. Journal of the Acoustical Society of America, 1987, 82: 1758-1762.
[15] Lu J F, Hanyga A. Wave field simulation for heterogeneous porous media with singular memory drag force[J]. Journal of Computational Physics, 2005, 208: 651-674.
[16] Wilmanski K. A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials[J]. Soil Dynamics & Earthquake Engineering, 2006, 26: 509-536.
[17] Bernardi C, Hecht F, Nouri F Z. A new finite-element discretization of the Stokes problem coupled with the Darcy equations[J]. Ima Journal of Numerical Analysis, 2010, 30(1): 61–93.
[18] Wang W W, Xu C J. Spectral methods based on new formulations for coupled Stokes and Darcy equations[J]. Journal of Computational Physics, 2014, 257: 126-142.
[19] Berryman J G. Confirmation of Biot’s theory[J]. Applied Physics Letters, 1980, 37: 382-384.
[20] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solids[J]. Geophysics, 1961, 26(2): 169-181.
[21] Ding B Y, Alexander H D Cheng, Chen Zh L. Decoupling coefficients of dilatational wave for Biot’s dynamic equation and its Green’s functions in frequency domain[J]. Acta Mathematicae Applicatae Sinica (English Series), 2016, 37(1): 121-136.
[22] Chen J. Time Domain fundamental solution to Biot’s complete equations of dynamic poroelasticity Part І[J]. International Journal of Solids & Structures, 1994, 31(10): 1447-1490.
[23] Ding B Y, Jiang J Q, Hu J. The treatment of BEM for porodynamic problems subjected to a force source in time-domain[J]. Engineering Analysis with Boundary Elements, 2016, 67: 138-151.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}