基于瞬时频率估计与Vold-Kalman滤波的铣削颤振识别

汪晓姗,彭志科,陈是扦

振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 70-76.

PDF(1933 KB)
PDF(1933 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (16) : 70-76.
论文

基于瞬时频率估计与Vold-Kalman滤波的铣削颤振识别

  • 汪晓姗,彭志,陈是扦
作者信息 +

Chatter detection in milling process based on instantaneous frequency estimation and the Vold-Kalman filter

  • WANG Xiaoshan,PENG Zhike,CHEN Shiqian
Author information +
文章历史 +

摘要

颤振严重制约了高速铣削加工效率。动态铣削力信号具有非线性、非平稳的特点,常规的信号分解方法难以处理该类信号。本文提出了一种基于瞬时频率估计和Vold-Kalman滤波的多分量信号分解方法,并运用该信号分解方法识别颤振。首先,基于频谱集中性指标估计信号的瞬时频率参数;然后,用Vold-Kalman滤波器提取对应参数的各信号分量;由于颤振时铣削力信号的能量分布在频域发生变化,由此引入能量熵的定义。最后采用分解得到的子信号能量熵变化来识别颤振。实验分析表明该方法有效可行。

Abstract

 Chatter is the major factor affecting the efficiency of high-speed milling.Chatter signal in milling has obvious nonlinear and non-stationary properties.It is difficult for the conventional signal analysis method to deal with signals in such category.This paper presented a multi-component signal decomposition method based on instantaneous frequency estimation and the Vold-Kalman filter.And the signal decomposition method was applied to chatter detection.First, the instantaneous frequency parameters of the signals were estimated based on the spectral concentration index.Then, the Vold-Kalman filter was applied to extract the signal components corresponding to the estimated parameters.Since the energy distribution of the milling force signal changed in the frequency domain as a result of chatter, the definition of energy entropy was introduced.Finally, chatter was identified by the change of energy entropy of the sub-signal.The experimental results show that the method is effective and feasible.

 

关键词

铣削 / 颤振 / 频谱集中性指标 / Vold-Kalman滤波 / 能量分布

Key words

milling / chatter / spectral concentration index / Vold-Kalman filter / energy entropy

引用本文

导出引用
汪晓姗,彭志科,陈是扦. 基于瞬时频率估计与Vold-Kalman滤波的铣削颤振识别[J]. 振动与冲击, 2018, 37(16): 70-76
WANG Xiaoshan,PENG Zhike,CHEN Shiqian. Chatter detection in milling process based on instantaneous frequency estimation and the Vold-Kalman filter[J]. Journal of Vibration and Shock, 2018, 37(16): 70-76

参考文献

[1] 于英华, 徐兴强, 徐平. 切削颤振的在线监测与控制研究现状分析[J]. 振动与冲击, 2007, 26(1):130-132.
[2] Altintas Y, Chan P K. In-process detection and suppression of chatter in milling[J]. International Journal of Machine Tools and Manufacture, 1992, 32(3): 329-347.
[3] Yoon M C, Chin D H. Cutting force monitoring in the endmilling operation for chatter detection[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(6): 455-465.
[4] S. Tangjitsitcharoen,T.Saksri,S.Ratanakuakangwan, Advance in chatter detection in ball end milling process by utilizing wavelet transform,J.Intell. Manuf. (2013)1–15.
[5] Perez-Canales D, Vela-Martínez L, Jáuregui-Correa J C, et al. Analysis of the entropy randomness index for machining chatter detection[J]. International Journal of Machine Tools and Manufacture, 2012, 62: 39-45.
[6] Tansel I N, Li M, Demetgul M, et al. Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR)[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1-4): 109-118.
[7] Kuljanic E, Sortino M, Totis G. Multisensor approaches for chatter detection in milling[J]. Journal of Sound and Vibration, 2008, 312(4): 672-693.
[8] Tansel I N, Wagiman A, Tziranis A. Recognition of chatter with neural networks[J]. International Journal of Machine Tools and Manufacture, 1991, 31(4): 539-552.
[9] Tarng Y S, Li T C, Chen M C. On-line drilling chatter recognition and avoidance using an ART2—A neural network[J]. International Journal of Machine Tools and Manufacture, 1994, 34(7): 949-957.
[10] Li X Q, Wong Y S, Nee A Y C. Tool wear and chatter detection using the coherence function of two crossed accelerations[J]. International Journal of Machine Tools and Manufacture, 1997, 37(4): 425-435.
[11] Fu Y, Zhang Y, Zhou H, et al. Timely online chatter detection in end milling process[J]. Mechanical Systems and Signal Processing, 2016, 75: 668-688.
[12] 迟玉伦, 李郝林. 铣削颤振稳定域叶瓣图确定方法研究[J]. 振动与冲击, 2014, 33(4):90-93.
[13] Cao H, Zhou K, Chen X. Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators[J]. International Journal of Machine Tools and Manufacture, 2015, 92: 52-59.
[14] Zhang Z, Li H, Meng G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture, 2016.
[15] Vold H, Mains M, Blough J. Theoretical foundations for high performance order tracking with the Vold-Kalman tracking filter[R]. SAE Technical Paper, 1997.
[16] Yang Y, Peng Z, Dong X, et al. Application of parameterized time-frequency analysis on multicomponent frequency modulated signals[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(12): 3169-3180.
[17] Chen S, Yang Y, Wei K, et al. Time-Varying Frequency-Modulated Component Extraction Based on Parameterized Demodulation and Singular Value Decomposition[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(2): 276-285.
[18] Vold H, Herlufsen H, Mains M, et al. Multi axle order tracking with the Vold-Kalman tracking filter[J]. Sound and Vibration, 1997, 31(5): 30-

PDF(1933 KB)

Accesses

Citation

Detail

段落导航
相关文章

/