基于自参考自适应消噪的行星轮轴承内圈故障特征提取

贺东台 郭瑜 伍星 刘志琦 赵磊

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 101-106.

PDF(1081 KB)
PDF(1081 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 101-106.
论文

基于自参考自适应消噪的行星轮轴承内圈故障特征提取

  • 贺东台 郭瑜 伍星 刘志琦 赵磊
作者信息 +

Fault feature extraction for a planet gear’s bearing inner race based on self-reference adaptive de-noising

  • HE Dong-tai  GUO Yu  WU Xing  LIU Zhiqi  ZHAO Lei
Author information +
文章历史 +

摘要

针对行星轮轴承振动信号的传递时变路径,且行星轮轴承振动信号常被齿轮啮合振动信号所湮没等问题。本文提出一种基于自参考自适应消噪的行星轮轴承内圈故障诊断方法。首先,用自参考自适应消噪技术(SANC)、AR模型预白化等预处理技术以削弱齿轮啮合振动信号的干扰;然后,基于谱峭度(Spectral Kurtosis,SK)自适应求解共振带参数;再采用Hilbert变换提取平方包络信号;最后,对包络信号进行谱分析。试验结果表明该方法可以有效地揭示行星轮轴承内圈的故障特征信息。

Abstract

Aiming at problems of planet gear bearing’s vibration signals having time-varying transmission path and these signals being obliterated by gears meshing vibration signals,a diagnosis method for a planet gear bearing’s inner race faults based on self-reference adaptive de-noising (SRAD) was proposed here. Firstly,the disturbances of gears meshing vibration signals were weakened with the technique of SRAD and the pre-whiten technique of AR model. Then,the resonance band’s parameters were solved adaptively based on the spectral kurtosis approach. Furthermore,the square envelope signal was extracted using Hilbert transformation. Finally,the spectral analysis was conducted for the envelope signal. Test results showed that the proposed method can effectively reveal the fault feature information of planet gear bearing’s inner race.

 

关键词

行星齿轮箱 / 行星轮轴承 / 自适应自参考噪声消除 / 包络分析

Key words

planetary gearbox / planet gear’s bearing / self-reference adaptive de-noising (SRAD) / envelope analysis.

引用本文

导出引用
贺东台 郭瑜 伍星 刘志琦 赵磊. 基于自参考自适应消噪的行星轮轴承内圈故障特征提取[J]. 振动与冲击, 2018, 37(17): 101-106
HE Dong-tai GUO Yu WU Xing LIU Zhiqi ZHAO Lei. Fault feature extraction for a planet gear’s bearing inner race based on self-reference adaptive de-noising[J]. Journal of Vibration and Shock, 2018, 37(17): 101-106

参考文献

[1]. Sawalhi, N. (2007) Rolling Element Bearings: Diagnostics, Prognostics and Fault Simulations. Ph D Dissertation, University of New South Wales.
[2]. Bonnardot.F. Randall. R.B. and Antoni.J. (2004) Enhanced unsupervised noise cancellation using angular resampling for planetary bearing fault diagnosis. International Journal of Acoustics and Vibration, 9 (2), 51–60.
[3]. Jain S, Hunt H. Vibration Response of a Wind-Turbine Planetary Gear Set in the Presence of a Localized Planet Bearing Defect[C]// ASME 2011 International Mechanical Engineering Congress and Exposition. 2011:943-952.
[4]. Feng Z, Ma H, Zuo M J. Amplitude and frequency demodulation analysis for fault diagnosis of planet bearings[J]. Journal of Sound & Vibration, 2016, 382:395-412.
[5]. Gui Y, Han Q K, Chu F L. A vibration model for fault diagnosis of planetary gearboxes with localized planet bearing defects[J]. Journal of Mechanical Science & Technology, 2016, 30(9):4109-4119.
[6]. Randall R B. Detection and diagnosis of incipient bearing failure in helicopter gearboxes[J]. Engineering Failure Analysis, 2004, 11(2):177-190.
[7]. Ho, D., & Randall, R. B. (2000). Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems & Signal Processing, 14(5), 763-788.
[8]. Antoni, J. and Randall, R.B. (2004) Unsupervised noise cancellation for vibration signals: part I—evaluation ofadaptive algorithms. Mechanical Systems and Signal Processing, 18 (1), 89–101.
[9]. P.S.R.Diniz. Adaptive Filtering: Algorithms and Practical Implementation Fourth Edition. Chapter two: LeastMeanSquare Criterion.Springer.
[10]. Sawalhi N, Randall R B, Endo H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems & Signal Processing, 2007, 21(6):2616-2633.
[11]. 张袁元, 李舜酩, 胡伊贤,等. LMS方法的改进及联合EEMD在振动信号去噪中的应用[J]. 振动与冲击, 2013, 32(20):61-66.
Zhang Yuan-yuan, Li Shun-ming ,et al. Improvement of LMS method and its application combined with EEMDin Vehicle Vibration signal denoising[J].Journal of Vibration and shock,Vol.33No.20.2013.61-66.
[12]. 王天杨, 李建勇, 程卫东. 基于改进的自适应噪声消除和故障特征阶比谱的齿轮噪源干扰下变转速滚动轴承故障诊断[J]. 振动与冲击, 2014, 33(18):7-13.
WANG Tian-yang,LI Jian-yong,etal.Fault diagnosis rolling bearing under a variable rotational speed and gear vibration noise based on revised ANC algorithm and FCO spectrum.Journal of Vibration and shock,Vol.33No.18.2014.7-13.
[13]. 徐峰, 王志芳, 王宝圣. AR模型应用于振动信号趋势预测的研究[J]. 清华大学学报自然科学版, 1999, 39(4):57-59.
Xu Feng, zhi-fang wang, Wang Baosheng. AR model is applied to vibration signal trend prediction research [J]. Journal of tsinghua university natural science edition, 1999, 39 (4) : 57-59.
[14]. 石林锁, 沈金伟, 张亚洲,等. 基于AR模型和谱峭度法的滚动轴承故障诊断[J]. 振动与冲击, 2011, 30(12):257-260.
SHI linsuo,SHENjinwei,ZHANGyazhou.Fault diagnosis of a rolling element bearing based on AR model and spectral kurtosis[J].Journal of Vibration and shock,Vol.30No.12.2011.257-260.
[15]. 郭瑜, 郑华文, 高艳,等. 基于谱峭度的滚动轴承包络分析[J]. 振动、测试与诊断, 2011, 31(4):517-521.
Guoyu,ZHENGhuawen,GAOyan. Diagnosis Rolling Element Bearing Based on Spectral Kurtosis[J].Journal ofVibration,Measurement&Diagnosis.Vol.31.No.4.2011:517-521.
[16]. Mcfadden P D, Smith J D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique — a review[J]. Tribology International, 1984, 17(1):3-10.
[17]. Antoni J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems & Signal Processing, 2007, 21(1):108-124.

PDF(1081 KB)

Accesses

Citation

Detail

段落导航
相关文章

/