基于SHPB技术的混凝土冲击弯拉惯性效应研究

陈徐东,刘志恒,陈晨

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 128-134.

PDF(1428 KB)
PDF(1428 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 128-134.
论文

基于SHPB技术的混凝土冲击弯拉惯性效应研究

  • 陈徐东,刘志恒,陈晨
作者信息 +

Impact,flexural and tensile inertial Effects of concrete based on SHPB technique

  • CHEN Xudong, LIU Zhiheng, CHEN Chen
Author information +
文章历史 +

摘要

混凝土材料的SHPB动态弯拉试验在试验技术方面还存在一定问题。按照应力平衡的假设,必须要知道三种应力波的具体值才能计算出应力和应变率。然而应力波沿试件纵向传播所需的时间比沿横向传播所需的时间短,当试件断裂时,透射杆上并不能测得应力波。根据Delvare等人的研究,可采用无限长梁模型,得到弯矩的计算公式,从而计算出试件的强度和应变率。此外,在冲击弯拉试验中,试件受到惯性力的作用会对试验精度产生一定影响,因此有必要对试件所受惯性力进行讨论。本试验中,试件在受到冲击的过程中只在部分长度内发生变形,定义该部分长度为有效长度,通过无限长梁模型的关系式推导得到有效长度的计算公式,并根据相关原理计算出试件受到的惯性力,计算出其真实强度。

Abstract

There are still some problems in test technique of concrete material’s SHPB dynamic flexural and tensile tests. According to the assumption of stress equilibrium,it is necessary to know specific values of three kinds of stress waves to calculate stress and strain rate. However,the time required for longitudinal propagation of stress wave along a specimen is shorter than that for lateral propagation. Thus,stress wave can’t be measured on a transmission rod when the specimen is broken. According to the results obtained by Delvare et al,the calculation formula for bending moment can be derived using an infinite long beam model to further calculate the specimen’s strength and strain rate. In addition,in impact,bending and tensile tests,inertial forces exerted on the specimen affect the test accuracy. So,it is necessary to discuss inertial forces exerted on the specimen. Here,in impact tests,only part length of the specimen produced deformation. This part length was defined as the valid length. The relation formulas of the infinite long beam model were used to derive the calculation formula of the valid length. According to the correlation principle,inertia forces exerted on the specimen were calculated,and then the specimen’s actual strength was calculated.

关键词

混凝土 / 冲击 / 惯性效应 / 动态提高因子

Key words

 concrete / impact / inertial effect / dynamic increase factor

引用本文

导出引用
陈徐东,刘志恒,陈晨. 基于SHPB技术的混凝土冲击弯拉惯性效应研究[J]. 振动与冲击, 2018, 37(17): 128-134
CHEN Xudong, LIU Zhiheng, CHEN Chen. Impact,flexural and tensile inertial Effects of concrete based on SHPB technique[J]. Journal of Vibration and Shock, 2018, 37(17): 128-134

参考文献

[ 1 ]  王政, 倪玉山, 曹菊珍, 等. 冲击载荷下混凝土动态力学性能研究进展[J]. 爆炸与冲击, 2005, 25(6):519-527.
      WANG Zheng, NI Yushan,CAO Juzhen,et al.
Recent advances of dynamic mechanical bahavior of concrete under impact loading [J]. Explosion and Shock Waves, 25(6):519-527.
[ 2 ]  邵羽, 袁昊天, 徐令宇, 等. 基于SHPB技术的混凝土动态抗拉强度研究述评[J]. 水力发电学报, 2016, 35(8):12-24.
      SHAO Yu, YUAN Haotian, XU Lingyu, et al. Review on dynamic tensile strength of concrete measured using split hopkinson pressure bar technique [J]. Journal of Hydroelectric Engineering, 2016, 35(8):12-24.
[ 3 ]  闫东明, 逯静洲, 徐平. 单轴压荷载下素混凝土动态特性及本构关系研究[J]. 水利与建筑工程学报, 2010, 08(6):11-15.
      YAN Dongming, LU Jingzhou, XU Ping. Study on dynamic properties of plain concrete under uniaxial compression and its constitutive relation [J]. Journal of Water Resources and Architectural Engineering, 2010, 08(6):11-15.
[ 4 ]  Li J, Wu C, Hao H, et al. A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads [J]. International Journal of Impact Engineering, 2017.
[ 5 ]  巫绪涛, 谢思发, 胡俊. EPS混凝土的动态抗压强度和吸能特性[J]. 振动与冲击, 2013, 32(17):133-137.
      WU Xutao, XIE Sifa, HU Jun. Dynamic compressive strength and energy absortion property of EPS concrete [J]. Journal of Vibration and Shock, 2013, 32(17):133-137.
[ 6 ]  Zhang M, Wu H J, Li Q M, et al. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments [J]. International journal of impact engineering, 2009, 36(12): 1327-1334.
[ 7 ]  吴胜兴, 周继凯, 沈德建, 等. 混凝土动态弯拉试验技术与数据处理方法[J]. 水利学报, 2009, 40(5):569-575.
      WU Shengxing, ZHOU Jikai, SHEN Dejian, et al. Test technique and data processing method for dynamic flexural-tensile test of concrete [J]. SHUILI XUEBAO, 2009, 40(5):569-575.
[ 8 ]  杜修力, 揭鹏力, 金浏. 考虑初始缺陷影响的混凝土梁动态弯拉破坏模式分析[J]. 工程力学, 2015, (2):74-81.
      DU Xiuli, JIE Pengli, JIN Liu. Dynamic flexural-tensile failure mode analysis of concrete beam with initial defect [J]. Engineering Mechanics, 2015, (2):74-81.
[ 9 ]  杜攀峰, 黄立葵, 陈岚. 水泥混凝土弯拉强度和劈裂强度对比试验研究[J]. 科学技术与工程, 2006, 6(7):837-839.
      DU Panfeng, HUANG Likui, CHEN Lan. The comparative experiment research of cement concrete between bending and flexural tensile strength [J]. Science Technology and Engineering, 2015, (2):74-81.
[ 10 ]  武明鑫, 张楚汉, 陈振富. 混凝土直拉, 劈拉, 弯拉强度关系的试验与仿真研究[J]. 水利学报, 2015, 46(8): 981-988.
      WU Mingxin, ZHANG Chuhan, CHEN Zhenfu. Study on the direct tensile, splitting and flexure strengths of concrete [J]. SHUILI XUEBAO, 2015, 46(8): 981-988.
[ 11 ]  周继凯, 吴胜兴, 苏盛, 等. 小湾拱坝湿筛混凝土动态弯拉力学特性试验研究[J]. 水利学报, 2010, 39(1):73-79.
      ZHOU Jikai, WU Shengxing, SU Sheng, et al. Experimental study on dynamic flexural-tensile mechanical behavior of wet sieving concrete of Xiaowan Arch Dam [J]. SHUILI XUEBAO, 2010, 39(1):73-79.
[ 12 ]  王岩, 吴胜兴, 周继凯, 等. 小湾拱坝湿筛与三级配混凝土静态弯拉声发射特性[J]. 振动与冲击, 2011, 30(5):10-17.
      WANG Yan, WU Shengxing, ZHOU Jikai, et al. Acoustic emission characteristics of wet sieving concrete and three-graded one in xiaowan arch dam under static flexural-tensile [J]. Journal of Vibration and Shock, 2011, 30(5):10-17.
[ 13 ]  赵德博, 易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究[J]. 振动与冲击, 2015, 34(11):139-145.
      ZHAO Debo, YI Jianwei. Anti-impact behavior and design method for RC beams. Journal of Vibration and Shock, 2015, 34(11):139-145.
[ 14 ]  Zhang X X, Ruiz G, Yu R C. A New Drop-Weight Impact Machine for Studying Fracture Processes in Structural Concrete [J]. Strain, 2010, 46(3):252-257.
[ 15 ]  Millard S G, Molyneaux T C K, Barnett S J, et al. Dynamic enhancement of blast-resistant ultra high performance fibre-reinforced concrete under flexural and shear loading [J]. International Journal of Impact Engineering, 2010, 37(4): 405-413.
[ 16 ]  Lee O S, Kim M S. Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique [J]. Nuclear Engineering & Design, 2003, 226(2):119-125.
[ 17 ]  张志刚, 孔大庆, 宫光明, 等. 高应变率下混凝土动态力学性能SHPB实验[J]. 解放军理工大学学报自然科学版, 2007, 8(6):611-618.
      ZHANG Zhigang, KONG Daqing, GONG Guangming, et al. Dynamic mechanical behavior of concrete under high strain rate using SHPB [J]. Journal of PLA university of science and technology, 2007, 8(6):611-618.
[ 18 ]  Hanus J L, Magnain B, Durand B. Processing dynamic split Hopkinson three-point bending test, with normalized specimen of quasi-brittle material [J]. Mechanics & Industry, 2012, 13(6):381-393.
[ 19 ]  Delvare F, Hanus JL, Bailly P. A non-equilibrium approach to processing Hopkinson bar bending test data. Intertional Journal of Impact Engineering 2010: 37:1170-1179.
[ 20 ]  Chen X, Chen C, Xu L, et al. Dynamic flexural strength of concrete under high strain rates [J]. 2016.
[ 21 ]  Bentur A, Mindess S, and Banthia N. The behavior of concrete under impact loading: experimental procedures and method of analysis. Materials and Structures, 1986:19(5):371-37
[ 22 ]  Banthia N, Mindess S, Bentur A, et al. Impact testing of concrete using a drop-weight impact machine [J]. Experimental Mechanics, 1989, 29(1):63-69.
[ 23 ]  武明鑫. 混凝土动力冲击性能试验与细观数值仿真研究[D]. 清华大学, 2015.
      WU Mingxin. Study on dynamic impact behavior of concrete through experimental tests and meso-scale simulation [D]. Tsinghua University, 2015.
[ 24 ]  Comite Euro-International du Beton. CEB-FIP model code 1990 [S]. Redwood Books, Trowbridge, Wiltshire, UK, 1993.
[ 25 ]  Wu M, Chen Z, Zhang C. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: I. Drop-weight tests. Engineering Fracture Mechanics 2015:135:94-112.

PDF(1428 KB)

Accesses

Citation

Detail

段落导航
相关文章

/