织物复合材料空间可展桁架模态试验与分析

张祎贝1,高冀峰1,陈务军1,张大旭1,房光强2,曹争利2,彭福军2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 155-160.

PDF(1838 KB)
PDF(1838 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 155-160.
论文

织物复合材料空间可展桁架模态试验与分析

  • 张祎贝1,高冀峰1,陈务军1,张大旭1,房光强2,曹争利2,彭福军2
作者信息 +

Modal tests and analysis of a weave composite space deployable truss

  • ZHANG Yibei1,GAO Jifeng1,CHEN Wujun1,ZHANG Daxu1,FANG Guangqiang2,CAO Zhengli2,PENG Fujun2
Author information +
文章历史 +

摘要

航天器正朝着大型化、轻量化和模块化的方向发展。由织物复合材料制成的空间可展桁架结构,作为航天器的组成结构有广泛的应用前景。以一个由织物复合材料制成的空间可展桁架结构为研究对象,开展了微重力环境下的模态试验和仿真分析。结构主要由空心圆管、三角形隔板和斜加劲索组成。模态试验采用气动-电磁悬挂系统实现结构重力卸载,模拟微重力环境。仿真分析中,空心圆管由织物复合材料构成,假设为正交各向异性材料结构;三角形隔板由铺层复合材料构成,假设为各向同性材料结构;考虑斜加劲索的预应力对结构刚度及斜加劲索自身有效弹性模量的影响。最终得到的仿真结果与试验对应关系良好,对大型预应力空间可展桁架研究具有参考价值。

Abstract

A large space deployable truss made of weave composite material was taken as a study object. Modal tests in microgravity environment and simulation analysis were conducted for this truss. The space truss was mainly composed of circular hollow section pipe,triangular spacer and oblique stiffened cable. In modal tests,a pneumatic electromagnetic suspension system was used to realize a structure’s gravity off-loading and simulate the microgravity environment. In simulation analysis,a circular hollow section pipe made of weave composite material was assumed to be an orthotropic material structure; a triangular spacer made of laminated composite material was assumed to be an isotropic material structure; the effects of oblique stiffened cable’s pre-stress on structural stiffness and oblique stiffed cable’s equivalent elastic modulus were considered. The simulation results agreed well with those of tests. The study results provided a reference for studying large pre-stressed space deployable trusses.

关键词

织物复合材料 / 空间可展桁架 / 微重力模态试验 / 预应力 / 非线性加劲索

Key words

weave composite material / space deployable truss / microgravity modal test / pre-stress / nonlinear stiffened cable

引用本文

导出引用
张祎贝1,高冀峰1,陈务军1,张大旭1,房光强2,曹争利2,彭福军2. 织物复合材料空间可展桁架模态试验与分析[J]. 振动与冲击, 2018, 37(17): 155-160
ZHANG Yibei1,GAO Jifeng1,CHEN Wujun1,ZHANG Daxu1,FANG Guangqiang2,CAO Zhengli2,PENG Fujun2. Modal tests and analysis of a weave composite space deployable truss[J]. Journal of Vibration and Shock, 2018, 37(17): 155-160

参考文献

[1]  李东旭. 挠性航天器结构动力学[M]. 科学出版社, 2010.
Li Dongxu. Flexible spacecraft structure dynamics[M]. Science Press, 2010
[2]  刘福寿. 大型空间结构动力学等效建模与振动控制研究[D]. 南京航空航天大学, 2015.
Liu Fushou. Dynamic Equivalent Modeling and Vibration Control of Large Space Structures[D]. Nanjing University of Aeronautics and Astronautics, 2015
[3]  郭其威, 吴松, 刘芳,等. 航天器柔性附件对整器固有振动特性影响因素及规律分析[J]. 振动与冲击, 2016, 35(6):187-191.
Guo Qiwei, Wu Song, Liu Fang, et al. The effect and change rule of spacecraft flexible annex on system natural vibration characteristics[J]. Journal of vibration and shock, 2016, 35(6):187-191.
[4]  任勇生, 王晓辉. SMA纤维混杂复合材料箱型薄壁悬臂梁的固有频率[J]. 振动与冲击, 2010, 29(12):206-210.
Ren Yongsheng, Wang Xiaohui. Natural frequency of the SMA fiber hybrid composite box section thin walled cantilever beam[J]. Journal of vibration and shock, 2010, 29(12):206-210.
[5]  Rawal A, Saraswat H, Sibal A. Tensile response of braided structures: a review[J]. Textile Research Journal, 2015, 85(19): 2083-2096
[6]  Ayranci C, Romanyk D, Carey J P. Elastic properties of large-open-mesh 2D braided composites: Model predictions and initial experimental findings[J]. Polymer Composites, 2010, 31(12):2017-2024.
[7]  Ayranci C, Carey J P. Predicting the longitudinal elastic modulus of braided tubular composites using a curved unit-cell geometry[J]. Composites Part B Engineering, 2010, 41(3):229-235.
[8]  鞠苏, 江大志, 杜刚,等. 超轻质全复合材料桁架结构的制备及弯曲特性[J]. 复合材料学报, 2009, 26(3):1-6.
Ju Su, Jiang Dazhi, Du Gang, et al. Fabrication and flexural characteristics of ultra-lightweight integral composite truss structure[J]. Journal of Composite Materials, 2009, 26(3):1-6.
[9]  Sun J, Shan X, Zhang X, et al. Analysis and research on friction-free cylinder of modal testing suspension system[C]// Wseas International Conference on Robotics, Control and Manufacturing Technology. World Scientific and Engineering Academy and Society (WSEAS), 2008:42-46.
[10]  陈政清, 杨孟刚. 梁杆索结构几何非线性有限元[M]. 人民交通出版社, 2013.
Chen Zhengqing, Yang Menggang. Geometrical nonlinear finite element method of beam and cable structure [M]. China Communications Press, 2013.
[11]  Troitsky M S. Cable-stayed bridges: theory and design[M]. BSP Professional Books, 1988.
[12]  王波. 大跨斜拉桥拉索局部振动特性及其影响研究[D]. 华中科技大学, 2008.
Wang Bo. Characteristic and Influence of Local Cable Vibration on Long-Span Cable-Stayed Bridges[D]. Huazhong University of Science and Technology, 2008.
[13]  郭其威, 张美艳, 唐国安. 太阳能电池阵地面模态试验的重力影响及其校正方案[J]. 振动与冲击, 2008, 27(12):44-46.
Guo Qiwei, Zhang Meiyan, Tang Guoan. Effects of gravity on ground experimental modal analysis of solar panel and correction methodology[J]. Journal of vibration and shock, 2008, 27(12):44-46.

PDF(1838 KB)

447

Accesses

0

Citation

Detail

段落导航
相关文章

/