输流曲管面内振动的小波有限元方法研究

曹建华1,2,刘永寿1,刘伟1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 256-260.

PDF(1142 KB)
PDF(1142 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 256-260.
论文

输流曲管面内振动的小波有限元方法研究

  • 曹建华1,2,刘永寿1,刘伟1
作者信息 +

A wavelet-based finite element method for in-plane vibration of curved pipes

  •  CAO Jianhua 1,2, LIU Yongshou 1, LIU Wei 1
Author information +
文章历史 +

摘要

将小波有限元应用于求解输流曲管面内流致振动问题,是小波在数值计算上一个新的尝试。针对输流曲管面内振动高阶微分方程,采用区间样条小波函数作为位移场的插值函数,建立了尺度为4、阶数为6的区间样条小波输流曲管单元,推导了小波单元质量矩阵、小波单元刚度矩阵和小波单元阻尼矩阵,从而获得了输流曲管面内振动的动力学方程组。在数值算例中,计算了输流直管和曲管在几种典型边界条件下的频率,这些数值结果与伽辽金方法、传统有限元方法所得结果吻合较好,并且计算时间短。研究表明,新型小波曲管单元在求解输流曲管面内线性振动问题有一定的优势,进一步的研究可望推广到输流曲管的非线性动力学分析中。

Abstract

In-plane vibrations of fluid-conveying curved pipes were investigated by using the wavelet-based finite element (FE) method as a new attempt of wavelet in numerical calculation. In order to solve the high order differential equation of fluid-conveying curved pipes’in-plane vibration,the interval spline wavelet function was taken as the interpolation one of the displacement field. The curved pipe element with interval spline wavelet of scale 4 and order 6 was established. The wavelet-based curved pipe element mass matrix,stiffness matrix and damping matrix were derived. Then,the dynamic equations for in-plane vibration of fluid-conveying curved pipes were derived. In numerical examples,natural frequencies of fluid-conveying straight pipe and curves one were computed with the proposed method under several typical boundary conditions. The numerical results agreed well with those obtained using Galerkin method and the traditional finite element one,and the former costed less time. The study showed that the new type wavelet-based curved pipe element has a certain advantage in solving in-plane linear vibration problems of curved pipes; after further studying,it can be extended to analyze nonlinear dynamic problems of fluid-conveying curved pipes.

关键词

输流管道 / 曲管 / 小波有限元 / 样条小波

Key words

fluid-conveying pipe / curved pipe / wavelet-based finite element (FE) / spline wavelet

引用本文

导出引用
曹建华1,2,刘永寿1,刘伟1. 输流曲管面内振动的小波有限元方法研究[J]. 振动与冲击, 2018, 37(17): 256-260
CAO Jianhua 1,2, LIU Yongshou 1, LIU Wei 1. A wavelet-based finite element method for in-plane vibration of curved pipes[J]. Journal of Vibration and Shock, 2018, 37(17): 256-260

参考文献

[1] Paidoussis M P. Fluid-structure interactions: slender structures and axial flow[M]. Academic press, 1998.
[2] Svetlitsky V A. Statics, stability and small vibrations of the flexible tubes conveying ideal incompressible fluid[J]. Raschetv na Prochnost, 1969, 14: 332-351.
[3] Chen S S. Vibration and stability of a uniformly curved tube conveying fluid[J]. The Journal of the Acoustical Society of America, 1972, 51(1B): 223-232.
[4] Chen S. Flow-induced in-plane instabilities of curved pipes[J]. Nuclear Engineering and Design, 1972, 23(1): 29-38.
[5] Chen S S. Out-of-plane vibration and stability of curved tubes conveying fluid[J]. ASME, Transactions, Series E-Journal of Applied Mechanics, 1973, 40: 362-368.
[6] Hill J L, Davis C G. The effect of initial forces on the hydroelastic vibration and stability of planar curved tubes[J]. Journal of Applied Mechanics, 1974, 41(2): 355-359.
[7] Misra A K, Païdoussis M P, Van K S. On the dynamics of curved pipes transporting fluid. Part I: inextensible theory[J]. Journal of Fluids and Structures, 1988, 2(3): 221-244.
[8] Misra A K, Païdoussis M P, Van K S. On the dynamics of curved pipes transporting fluid Part II: Extensible theory[J]. Journal of Fluids and Structures, 1988, 2(3): 245-261.
[9] Jung D, Chung J, Yoo H H. New fluid velocity ex-pression in an extensible semi-circular pipe conveying fluid[J]. Journal of sound and vibration, 2007, 304(1): 382-390.
[10] Jung D, Chung J. In-plane and out-of-plane motions of an extensible semi-circular pipe conveying fluid[J]. Journal of Sound and Vibration, 2008, 311(1): 408-420.
[11] Qiao N, Lin W, Qin Q. Bifurcations and chaotic mo-tions of a curved pipe conveying fluid with nonlinear constraints[J]. Computers & structures, 2006, 84(10): 708-717.
[12] Lin W, Qiao N. In-plane vibration analyses of curved pipes conveying fluid using the generalized differential quadrature rule[J]. Computers & structures, 2008, 86(1): 133-139.
[13] 王琳, 倪樵. 具有非线性运动约束输液曲管振动的分岔[J]. 振动与冲击, 2006, 25(1):67-69.
Wang Lin, Ni Qiao, Vibration bifurcation of a curved pipe conveying fluid with nonlinear constraint[J]. Journal of Vibration and Shock, 2006, 25(1):67-69.
[14] Dupuis C, Rousselet J. Application of the transfer matrix method to non-conservative systems involving fluid flow in curved pipes[J]. Journal of Sound and Vibration, 1985, 98(3): 415-429.
[15] Païdoussis M P, Luu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J]. Jour-nal of Sound and Vibration, 1986, 106(2): 311-331.
[16] Gorman D G, Reese J M, Zhang Y L. Vibration of a flexible pipe conveying viscous pulsating fluid flow[J]. Journal of Sound and Vibration, 2000, 230(2): 379-392.
[17] 李宝辉, 高行山, 刘永寿. 轴向可伸输液曲管平面内振动的波动方法研究[J]. 振动与冲击, 2013, 32(8):128-133.
Li Bao-hui, Gao hangshan, Liu Yongshou. Wave Propagation method for in-plane vibration of an axially extensible curved pipe conveying fluid. Journal of Vibration and Shock, 2013, 32(8):128-133.
[18] Chen X F, Yang S, Ma J, et al. The construction of wavelet finite element and its application[J]. Finite Elements in Analysis and Design, 2004, 40(5): 541-554.
[19] Han J G, Ren W X, Huang Y. A spline wavelet finite element formulation of thin plate bending[J]. Engi-neering with Computers, 2009, 25(4): 319.
[20] Xiang J W, Long J Q, Jiang Z S. A numerical study using Hermitian cubic spline wavelets for the analysis of shafts[J]. Proceedings of the Institution of Me-chanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(9): 1843-1851.
[21] Zhong Y, Xiang J. Construction of wavelet-based elements for static and stability analysis of elastic problems[J]. Acta Mechanica Solida Sinica, 2011, 24(4): 355-364.
[22] J. C. Goswami, A. K. Chan, and C. K. Chui, “On solving first kind integral equations using wavelets on a bounded interval,” IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 6, pp. 614–622.

PDF(1142 KB)

Accesses

Citation

Detail

段落导航
相关文章

/