钢丝绳拉伸疲劳寿命仿真分析与试验研究

杜文正,马保珠,曹大志,付广磊

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 261-269.

PDF(3844 KB)
PDF(3844 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 261-269.
论文

钢丝绳拉伸疲劳寿命仿真分析与试验研究

  • 杜文正,马保珠,曹大志,付广磊
作者信息 +

Simulation and tests for tensile fatigue life of steel wire rope

  • DU Wenzheng, MA Baozhu, CAO Dazhi, FU Guanglei
Author information +
文章历史 +

摘要

为研究钢丝绳在拉伸载荷下的疲劳寿命预测问题,以6×36 WS结构钢丝绳为研究对象,建立了钢丝绳的有限元模型,仿真分析了其在轴向拉伸载荷下的应力分布。对仿真结果中应力最大的钢丝进行拉伸疲劳试验,得到钢丝试件的载荷寿命曲线。在此基础上进行了钢丝绳疲劳寿命的仿真分析,并通过钢丝绳的疲劳试验进行了验证。钢丝绳疲劳仿真结果表明,在轴向拉伸载荷作用下,最大应力位于相邻两个绳股接触区域,对应的此处区域疲劳寿命最短。钢丝绳疲劳寿命仿真与试验结果具有较好的吻合度,由仿真数据拟合的载荷寿命曲线为钢丝绳疲劳寿命的预测提供了依据。

Abstract

To predict fatigue life of steel wire ropes under tensile load,the finite element model of a 6×36WS steel wire rope was established and its stress distribution under axial tensile load was simulated. The tensile fatigue test for the steel wire having the maximum stress was conducted to obtain its load-life curve. Then,the tensile fatigue life of the steel wire rope was simulated and its tensile fatigue test was conducted to verify the simulated result. The fatigue simulation result of the wire rope showed that under the axial tensile load,the maximum stress is located at the contact area of adjacent two strands where the fatigue life is the shortest; the fatigue life simulation result of the wire rope agrees well with that of its fatigue test,the load-life curve fitted with simulation data provides a basis for predicting fatigue life of steel wire ropes.

关键词

钢丝绳 / 有限元 / 钢丝 / 拉伸试验 / 疲劳寿命

Key words

steel wire rope / finite element / steel wire / tensile test / fatigue life

引用本文

导出引用
杜文正,马保珠,曹大志,付广磊. 钢丝绳拉伸疲劳寿命仿真分析与试验研究[J]. 振动与冲击, 2018, 37(17): 261-269
DU Wenzheng, MA Baozhu, CAO Dazhi, FU Guanglei. Simulation and tests for tensile fatigue life of steel wire rope[J]. Journal of Vibration and Shock, 2018, 37(17): 261-269

参考文献

[1] 张伦, 刘红芳, 孙杰, 等. 电动门窗升降器用钢丝绳疲劳断丝分析[J]. 金属制品, 2013 (1): 56-59.
ZHANG Lun, LIU Hong-fang, SUN Jie, et al. Wire fatigue fracture analysis of wire rope for electric windows lifter [J]. Metal Product, 2013 (1): 56-59.
[2] 鲁信辉,马平,王志勇. 钢丝绳应力场与疲劳寿命研究[J]. 机械设计与制造,2014,10:119-122.
LU Xin-hui, MA Ping, WANG Zhi-yong. The Research of Stress Field and Fatigue Life of the 6x7+IWS Steel Wire Ropes [J]. Machinery Design & Manufacture,2014,10:119-122.
[3] 贾小凡,张德坤. 承载钢丝绳在不同预张力下的弯曲疲劳损伤研究[J]. 机械工程学报,2011,47(24):31-37.
JIA Xiao-fan, ZHANG De-kun. Bending Fatigue Damage Behavior of Bearing Wire Rope on Different Pre-tension [J]. JOURNAL OF MECHANICAL ENGINEERING, 2011,47(24):31-37.
[4] 胡茂.滑轮直径对钢丝绳寿命影响研究[D]. 武汉:武汉理工大学,2012.45-52.
HU Mao. Study on the Influence of Pullv Diameter on the Life Span of Wire Rope [D]. Wuhan: University of Wuhan Technology, 2012.45-52.
[5] Wang D, Zhang D, Zhang Z, et al. Effect of various kinematic parameters of mine hoist on fretting parameters of hoisting rope and a new fretting fatigue test apparatus of steel wires [J]. Engineering failure analysis, 2012, 22: 92-112.
[6] Pavel Peterka, Jozef Krešák, Stanislav Kropuch, Failure analysis of hoisting steel wire rope [J]. Engineering Failure Analysis,2014, 45(2014):96–105.
[7] M. Giglio, A. Manes. Life prediction of a wire rope subjected to axial and bending loads [J]. Engineering Failure Analysis,2005, 12 (2005): 549–568.
[8] 倪响. 表面损伤对钢丝绳的弯曲疲劳性能影响研究[D]. 徐州:中国矿业大学, 2014.24-30.
NI Xiang. Effect of Impaired Surface Quality on Bending Fatigue Characteristics of Wire Rope. [D]. Xuzhou: China University of Mining and Technology, 2014.24-30.
[9] 任志乾, 于宗乐, 陈循. 钢丝绳弹塑性损伤本构模型研究[J]. 机械工程学报, 2017, 53(1): 121-129.
REN Zhi-qian, YU Zong-yue, CHEN Xun. Study on Wire Rope Elastic-plastic Damage Constitutive Model [J]. JOURNAL OF MECHANICAL ENGINEERING, 2017, 53(1): 121-129.
[10] Wang D G, Zhang D K, Wang S, et al. Finite element analysis of hoisting rope and fretting wear evolution and fatigue life estimation of steel wires [J]. Engineering Failure Analysis, 2013, 27: 173-193.
[11] 沈燕,张德坤,王大刚. 接触载荷对钢丝微动磨损行为影响的研究[J].摩擦学学报,2010,30(4):404-408.
SHEN Yan, ZHANG De-kun, WANG Da-gang. Effect of contact load on the fretting wear behavior of steel wire [J]. Tribology, 2010,30(4):404-408.
[12] 赵维建,张德坤,张泽锋. 碱性腐蚀环境下接触载荷对钢丝微动疲劳行为的影响[J]. 摩擦学学报,2012,32(3):306-312.
ZHAO Wei-jian, ZHANG De-kun, ZHANG Ze-feng, et al. Effect of Contact Load on the Fretting Fatigue of Steel Wire under Alkaline Corrosive Environment [J]. Tribology, 2012,32(3):306-312.
[13] A. Cruzado, S.B. Leen, M.A. Urchegui. Finite element simulation of fretting wear and fatigue in thin steel wires [J]. International Journal of Fatigue,2013,55:7-21.
[14] 成大先.机械设计手册[M].北京:化学工业出版社,2004:7-9.
CHENG Da-xian. Mechanical Design Manual [M]. Beijing: Chemical Industry Press, 2004:7-9.
[15] 肖毅华, 董晃晃, 平学成. 基于 ABAQUS 的 SPH 粒子生成及其在高速冲击计算中应用[J]. 振动与冲击, 2016, 35(17): 140-145.
XIAO Yi-hua,DONG Huang-huang, PING Xue-cheng.  A SPH particle generation method based on abaqus and its application in high velocity impact calculation [J]. Journal of vibration and shock, 2016, 35(17): 140-145.
[16] 孙土贵, 史天录. 钢丝绳数学模型及有限元分析[J]. 五邑大学学报 (自然科学版), 2016 ,30(01): 64-68.
SUN Tu-gui, SHI Tian-lu. Mathematical Model and Finite Element Analysis of Wire Ropes[J]. Journal of Wuyi University (Natural Science Edition), 2016 ,30(01): 64-68.

PDF(3844 KB)

Accesses

Citation

Detail

段落导航
相关文章

/