不同真空度下空中爆炸近场特性的数值模拟研究

李科斌1,李晓杰1,2,闫鸿浩1,王小红1,杨晨琛1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 270-276.

PDF(1796 KB)
PDF(1796 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 270-276.
论文

不同真空度下空中爆炸近场特性的数值模拟研究

  • 李科斌1,李晓杰1,2,闫鸿浩1,王小红1,杨晨琛1
作者信息 +

Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum

  • LI Kebin1, LI Xiaojie1,2, YAN Honghao1, WANG Xiaohong1, YANG Chenchen1
Author information +
文章历史 +

摘要

外界环境的改变会使空中爆炸时冲击波的传播过程产生明显变化,为分析真空度对爆炸近场特性的影响,建立了自由场空中爆炸的有限元模型,在萨克斯比例定律的基础上,通过引入特征比例距离Z,分析了不同真空度下爆炸近场特征参量的变化规律。分析结果表明:以霍普金森比例距离 和特征比例距离Z为变量的分段函数可表述不同真空度全范围内的爆炸峰压Δpm;比冲量i和正压作用时间t+的变化具有非单调性,且与爆轰产物稀疏波尾部的间断面密切相关;不同真空度下的爆轰产物界面和冲击波阵面时程曲线在无量纲坐标系中分别重叠,而极限膨胀体积与临界距离Rs呈线性关系。

Abstract

External environment variation makes shock wave propagation of air explosion produce obvious changes. In order to analyze the influence of degree of vacuum on near-field characteristics of air explosion,the finite element model of a free-field air explosion was established. Based on Sachs scaling law,introducing the characteristic scaled distance Z,the variation laws of explosion near-field characteristic parameters under various vacuum degrees were analyzed. Results indicated that the piecewise function taking Hopkinson scaled distance and the characteristic scaled distance Z as variables can express the explosion peak pressure Δpm within the full range of different degrees of vacuum; the variation of specific impulse i and positive pressure action time t+ is non-monotonic and closely related to sparse wave tail discontinuity surface of detonation product; time history curves of detonation product’s interface and shock wave front under different degrees of vacuum are overlapped,respectively in a dimensionless coordinate system,and the ultimate expansion volume is linearly related to critical distance Rs.


关键词

空中爆炸 / 真空环境 / 近场特征参量 / 稀疏波尾部间断面 / 特征比例距离

Key words

 explosion in air / vacuum environment / near-field characteristic parameters / sparse wave tail discontinuity surface / characteristic scaled distance

引用本文

导出引用
李科斌1,李晓杰1,2,闫鸿浩1,王小红1,杨晨琛1. 不同真空度下空中爆炸近场特性的数值模拟研究[J]. 振动与冲击, 2018, 37(17): 270-276
LI Kebin1, LI Xiaojie1,2, YAN Honghao1, WANG Xiaohong1, YANG Chenchen1. Numerical simulation for near-field characteristics of air explosion under different degrees of vacuum[J]. Journal of Vibration and Shock, 2018, 37(17): 270-276

参考文献

[1] Henrych J, Major R. The dynamics of explosion and its use[M]. Amsterdam: Elsevier, 1979.
[2] Sadovsky M.A. Mechanical effects of air shock waves from explosions according to experiments (1952)[J]. Sadovsky M.A Selected Works: Geophysics and Physics of Explosion, Nauka Press, Moscow, 2004.
[3] Brode H L. Blast wave from a spherical charge[J]. The Physics of Fluids, 1959, 2(2): 217-229.
[4] Науменко И А, Петровский И Г. Ударная волна атомного взрыва[M]. Воениздат, 1956.
[5] Command U S A M. Engineering Design Handbook. Explosions in Air. Part one[R]. AD/A-003 817 (AMC Pamphlet AMCP 706-181), Alexandria, VA, 1974.
[6] Kinney G F, Graham K J. Explosive Shocks in Air[M]. Springer Science & Business Media, 2013.
[7] Pokrovskii G I, Fedorov I S. Effect of shock and explosion on deformable media[J]. Gos. Izd, 1957.
[8] Yakovlev Y S. Explosion hydrodynamics[J]. Sudpromgiz, Leningrad, 1961.
[9] Baker W E, Cox P A, Kulesz J J, et al. Explosion Hazards and Evaluation[M]. Elsevier, 2012.
[10] R.G.Sachs. The Dependence of blast on ambient pressure and temperature. BRL report No.466. Aberdeen proving ground, Md.,1944.
[11] Dewey J, Sperrazza J. The Effect of Atmospheric Pressure and Temperature on Air Shock[R]. Ballistic Research Laboratories, 1950.
[12] Ericsson U, Edin K. On complete blast scaling[J]. The Physics of Fluids, 1960, 3(6): 893-895.
[13] Glasstone S. The Effects of Nuclear Weapons[R]. US Department of Defense, 1964.
[14] Veldman R L, Nansteel M W, Chen C C T, et al. The Effect of Ambient Pressure on Blast Reflected Impulse and Overpressure[J]. Experimental Techniques, 2017: 1-10.
[15] Silnikov M V, Chernyshov M V, Mikhaylin A I. Blast wave parameters at diminished ambient pressure[J]. Acta Astronautica, 2015, 109: 235-240.
[16] Jack Jr W H, Armendt Jr B F. Measurements of normally reflected shock parameters under simulated high altitude conditions[J]. BRL Report, 1965, 1280.
[17] 耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究[J]. 振动与冲击, 2017, 36(5): 23-29.
[18] Shin J, Whittaker A S, Cormie D, et al. Numerical modeling of close-in detonations of high explosives[J]. Engineering Structures, 2014, 81: 88-97.
[19] 张社荣, 李宏璧, 王高辉, 等. 水下爆炸冲击波数值模拟的网格尺寸确定方法[J]. 振动与冲击, 2015, 34(8): 93-100.
[20] Chapman T C, Rose T A, Smith P D. Blast wave simulation using AUTODYN2D: a parametric study[J]. International Journal of Impact Engineering, 1995, 16(5): 777-787.
[21] Л. П.奥尔连科. 爆炸物理学[M]. 孙承纬译. 北京:科学出版社,2011:467-472.
[22] Христофоров Б Д. Параметры фронта ударной волны в воздухе при взрыве зарядов из тэна и азида свинца разной плотности[J]. Механическое действие взрыва. М.: ИДГ РАН, 1961: 217-224.
[23] Berry F J, Holt M. The initial propagation of spherical blast from certain explosives[C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1954, 224 (1157) : 236-251.
[24] W.E.贝克. 空中爆炸[M]. 江科译. 北京:原子能出版社, 1982:141-146.
[25] Sachdev P L. Shock Waves & Explosions[M]. CRC Press, 2016.

PDF(1796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/