平台运动与管内流动联合作用下输液立管动力响应特性研究

吴天昊1,2,3,付世晓1,2,3,任桐鑫3,何玥3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 32-40.

PDF(1808 KB)
PDF(1808 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 32-40.
论文

平台运动与管内流动联合作用下输液立管动力响应特性研究

  • 吴天昊1,2,3,付世晓1,2,3,任桐鑫3,何玥3
作者信息 +

Dynamic responses of water intake risers under interaction between vessel motion and internal flow#br#

  • WU Tianhao 1,2,3, FU Shixiao 1,2,3, REN Tongxin 3, HE Yue 3
Author information +
文章历史 +

摘要

大管径悬垂输液立管因其经济性被广泛应用在深海油气开发中。输液立管在顶端平台运动和内流共同作用下,在顺流向(IL向)会产生动力响应,并与周围流体间形成相对振荡来流。这种相对振荡来流极有可能诱发输液立管产生横流向(CF向)的涡激振动(Vortex-induced Vibration, VIV)。为了研究输液立管在平台运动和内流联合作用下输液立管涡激振动响应特性,开展了大尺度输液立管模型试验,试验中利用光纤光栅应变传感器测量立管模型表面若干位置CF方向和IL向的时历应变。进而采用小波分析、模态分析等方法处理、分析试验数据。本文通过试验和数值模拟的方法,分析了IL向应变、流速、KC数、泻涡频率等分布规律。着重研究内流流速作用对于输液立管涡激振动响应特性的影响。结果表明:大管径输液立管在振荡流场和内流共同作用下,可以产生涡激振动。本试验内流速度区间下,内流作用对于输液立管固有频率,KC数和泻涡频率幅值分布,以及涡激振动影响不大。顶部平台运动诱发的涡激振动具有不稳定性。

Abstract

Freely hanging water intake risers (WIRs) are widely used in deep-sea oil and gas development for its economic efficiency. Due to interaction between vessel motion and internal flow,WIRs have strong dynamic responses in inline (IL) direction and form a relative oscillatory current between them and surrounding water. This oscillatory flow is very likely to induce vortex-induced vibration (VIV) of WIRs in cross flow (CF) direction. Here,large-scale model tests for a freely hanging water intake riser (WIR) were performed in an ocean basin to investigate the riser’s dynamic responses under interaction between vessel motion and internal flow. In tests,fiber brag grating (FBG) strain sensors were used to record strain time histories of some points at the riser surface in CF and IL directions. The results showed that large diameter WIRs’VIV occur under actions of internal flow and oscillation flow field; within the internal flow speed range of tests here,the action of internal flow can be neglected,the vessel motion-induced VIV has an instability.


引用本文

导出引用
吴天昊1,2,3,付世晓1,2,3,任桐鑫3,何玥3. 平台运动与管内流动联合作用下输液立管动力响应特性研究[J]. 振动与冲击, 2018, 37(17): 32-40
WU Tianhao 1,2,3, FU Shixiao 1,2,3, REN Tongxin 3, HE Yue 3. Dynamic responses of water intake risers under interaction between vessel motion and internal flow#br#[J]. Journal of Vibration and Shock, 2018, 37(17): 32-40

参考文献

[1] Griffin O M, Vandiver J K. Vortex-Induced Strumming Vibrations of Marine Cables With Attached Masses[J]. Journal of Energy Resources Technology, 1984, 106(4):458.
[2] Lie H, Kaasen K E. Modal analysis of measurements from a large-scale VIV model test of a riser in linearly sheared flow[J]. Journal of Fluids & Structures, 2006, 22(4):557-575.
[3] Allen DW, Henning DL. Proto type vortex-induced vibration tests for production risers. Proc. 2004OffshoreTechConf, Houston, USA. OTC Paper No. 13114. 2001.
[4] Tognarelli M, Slocum S, Frank W, et al. VIV Response of a Long Flexible Cylinder in Uniform and Linearly Sheared Currents[J]. 2004.
[5] Niedzwecki J M, Fang S M. Hydrodynamic response behavior of ribbon fairing[C]// Oceans 2013 Mts/ieee Conference. IEEE, 2013:1-4.
[6] Chaplin J R, Bearman P W, Huarte F J H, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids & Structures, 2005, 21(1):3-24.
[7] Trim A D, Braaten H, Lie H, et al. Experimental investigation of vortex-induced vibration of long marine risers[J]. Journal of Fluids & Structures, 2005, 21(3):335–361.
[8] Vandiver J K, Marcollo H, Swithenbank S, et al. High Mode Number Vortex-Induced Vibration Field Experiments[J]. 2005(2).
[9] Niedzwecki JM, Fang SM. Suppression off low-induced vibrations using ribbon fairings, International Journal of Computational Methods and Experimental Measurements 2013; 1(4): 395–405.
[10] Grant R G, Litton R W, Mamidipudi P. Highly Compliant Rigid (HCR) Riser Model Tests and Analysis[C]// 1999.
[11] Fernandes A C, Mirzaeisefat S, Cascão L V. Fundamental behavior of Vortex Self Induced Vibration (VSIV)[J]. Applied Ocean Research, 2014, 47(9):183-191.
[12] Wang J, Fu S, Baarholm R, et al. Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions[J]. Marine Structures, 2014, 39(39):131-156.
[13] Jungao Wang, Sherry Xiang, Shixiao Fu, Peimin Cao, Jianmin Yang, Jingxi He. Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. Marine Structures 50 (2016) 1e19.
[14] Chen S-S. Vibration and stability of a uniformly curved tube conveying fluid [J]. The Journal of the Acoustical Society of America, 1972, 51 (1B): 223–232.
[15] Housner G. Bending vibrations of a pipe line containing flowing fluid [J]. Journal of Applied Mechanics-Transactions of the ASME, 1952, 19 (2): 205–208.
[16] Moe G, Chucheepsakul S. The effect of internal flow on marine risers [C]. In Proceedings of the Seventh International Offshore Mechanics and Arctic Engineering Symposium, Houston, Texas,1988: 375–382.
[17] Wu M, Lou J. Effects of rigidity and internal flow on marine riser dynamics [J]. Applied ocean research, 1991, 13 (5): 235–244.
[18] Chang R. Straight talk about riser tension and more [C]. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, 2009: 637–651.
[19] Sparks C P. Fundamentals of marine riser mechanics: basic principles and simplified analyses [M].Penn Well Books, 2007.
[20] OrcaFlex. OrcaFlex Manual: Version9.5d. UK, 2012.
[21]Patel M, Seyed F. Internal flow-induced behaviour of flexible risers [J]. Engineering Structures,
1989, 11 (4): 266–280.
[22] Fu S, Wang J, Baarholm R, Wu J, Larsen CM. Features of Vortex-Induced Vibration in Oscillatory Flow, J. Off shore Mech. Arct. Eng2013; 136(1), 011801.
[23]Huang, S., Khorasanchi, M. and Herfjord, K., 2011. Drag Amplification of Long Flexible Riser Models Undergoing Multi-Mode VIV in Uniform Currents. Journal of Fluids and Structures. Vol. 27, pp. 342-53
[24]Sumer BM, Fredsøe J. Hydrodynamics around cylindrical structures (revised edition). Singapore: World Scientific Publishing Co. Pte. Ltd; 2006.
[25] Sumer BM, Fredsøe J. Transverse vibrations of an elastically mounted cylinder exposed to an oscillatory flow. J Offshore Mech Arct Eng 1988;110:387-94.
[26] Fernandes AC, Silva EMC, Franciss R, Coelho FM, Neto SFS. VSIV (vortex self-induced vibration) kinematics. In: ASME 2008 27th international conference on ocean, Offshore and Arctic engineering, Estoril; 2008. Paper No. 2008-57579.
[27] Fernandes AC, Sefat SM, Casc~ao LV, Boas PV, Francis R. Further investigation on vortex self-induced vibration (VSIV). In: ASME 2011 30th international conference on ocean, Offshore and Arctic engineering, Rotterdam; 2011. Paper No. 2011-50187.

PDF(1808 KB)

473

Accesses

0

Citation

Detail

段落导航
相关文章

/