本文研究了随机振动下包装件加速度响应的频域和时域特征,讨论了包装件跳动及缓冲材料非线性对包装件加速度响应的影响。结果表明:高斯激励下,包装件的跳动是引起包装件加速度响应非高斯性的主要原因。无约束条件下,包装件出现明显跳动,加速度响应概率密度分布呈现非高斯分布;在弹性和固定约束条件下,包装件跳动受到限制,当振动强度较大时,加速度响应分布与高斯分布有一定程度的偏离,在振动强度较小时,加速度响应分布符合高斯分布。
Abstract
The influences of packages’jumping and cushion material nonlinearity on acceleration responses of packages were investigated with tests. Under random vibrations,acceleration response features of packages were analyzed in frequency domain and time domain. Results indicated that under Gauss excitation,package jumping was the main reason to cause packages’acceleration responses having non-Gaussian features. Under unconstrained conditions,packages have obvious jumps,their acceleration responses’probability density distribution is a non-Gaussian one; under elastic and fixed constrained conditions,jumping of packages is restricted,when the vibration intensity is larger,acceleration responses’distribution of packages deviates from Gaussian distribution to some extent,when the vibration intensity is smaller,acceleration responses’distribution of packages is a Gaussian one.
关键词
随机振动 /
非高斯性 /
加速度响应 /
偏度 /
峭度
{{custom_keyword}} /
Key words
random vibration /
non-Gaussian /
acceleration response /
kurtosis /
skewness
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 彭国勋. 物流运输包装设计[M]. 第二版. 北京: 印刷工业出版社,2012: 25-53.
PENG Guo-xun. Logistics and Transport Packaging Design [M]. 2nd ed. Beijing: Printing Press,2012: 25-53.
[2] Rouillard V, Sek MA. Synthesizing non-stationary, non-Gaussian random vibrations [J]. Packaging Technology and Science, 2010, 23(8): 423–439.
[3] Garcia-Romeu MA, Rouillard V. On the statistical distribution of road vehicle vibrations [J]. Packaging Technology and Science, 2011, 24(8): 451–467.
[4] Rouillard V. Quantifying the Non-Stationarity of Vehicle Vibrations with the Run Test [J]. Packaging Technology and Science, 2014, 27(3): 203-219.
[5] 徐烁,王志伟. 基于湿度影响的蜂窝纸板动态压缩能量吸收图[J]. 振动与冲击, 2012,31 (23): 203-206.
XU Shuo, WANG Zhi-wei. Energy-absorption diagrams of honeycomb paperboards under dynamic compression in different relative humidities [J]. Journal of Vibration and Shock, 2012, 31(23): 203-206.
[6] Wang Z W, Li X F. Effect of strain rate on cushioning properties of molded pulp products [J]. Materials and Design, 2014, 57: 598-607.
[7] 张岩,王志伟. 湿度对手机用纸浆模塑缓冲包装能量吸收特性的影响[J]. 振动与冲击, 2015, 34(1): 39-43.
ZHANG Yan, WANG Zhi-wei. Energy absorption of expanded polyurethane under cycling compression and impact [J]. Journal of Vibration and Shock, 2015, 34(1): 39-43.
[8] 王立军,张岩,王志伟. 循环压缩和冲击下聚氨酯发泡塑料的能量吸收[J]. 振动与冲击, 2015, 34(5): 44-48.
WANG Li-jun, ZHANG Yan, WANG Zhi-wei. Energy absorption of expanded polyurethane under cycling compression and impact [J]. Journal of Vibration and Shock, 2015, 34(5): 44-48.
[9] Wang Z W, Wang L J, Xu C Y, et al. Influence of low-intensity repeated impacts on energy absorption and vibration transmissibility of honeycomb paperboard [J]. Packaging Technology and Science, 2016, 29(11): 585-600.
[10] 蒋瑜,陶俊勇,王得志,等. 一种新的非高斯随机振动数值模拟方法[J]. 振动与冲击, 2012, 31(19): 169-173.
JANG Yu, TAO Jun-yong, WANG De-zhi, et al. A novel approach for numerical simulation of a non-Gaussian random vibration [J]. Journal of Vibration and Shock, 2012, 31(19): 169-173.
[11] Lepine J, Rouillard V, Sek M. Review paper on road vehicle vibration simulation for packaging testing purposes [J]. Packaging technology and science, 2015, 28(8): 672-682.
[12] 朱大鹏,李明月. 铁路非高斯随机振动的数字模拟与包装件响应分析[J]. 包装工程, 2016, 37(1): 1-5.
ZHU Da-peng, LI Ming-yue. Digital simulation of non-Gaussian random vibration of railway and packaging system response analysis [J]. Packaging Engineering, 2016, 37(1): 1-5.
[13] 陈杰平,陈无畏,祝辉,等. 基于Matlab/Simulink的随机路面建模与不平度仿真[J]. 农业机械学报, 2010, 41(3): 11-15.
CHEN Jie-ping, CHEN Wu-wei, ZHU Hui, et al. Modeling and Simulation on Stochastic Road Surface Irregularity Based on Matlab /Simulink [J]. Transactions of Chinese Society of Agricultural Machinery, 2010, 41(3): 11-15.
[14] 李晓刚. 运输包装系统随机振动频域分析[J]. 包装工程, 2012, 33(15): 50-54.
LI Xiao-gang. Random vibration frequency domain analysis of transport packaging system [J]. Packaging Engineering, 2012, 33(15): 50-54.
[15] Bernad C, Laspalas A, Gonzalez D, et al. Dynamic Study of Stacked Packaging Units by Operational Modal Analysis [J]. Packaging Technology and Science, 2010, 23(3): 121-133.
[16] Wang Z W, Fang K, Wang L J, et al. Dynamic load distribution of stacked packaging unit subjected to vertical vibration by using a pressure-mapping system [C]. Proceedings of the 27th IAPRI World Symposium on Packaging, Valencia, Spain: 2015. http://www.iapriweb.org/.
[17] Wang Z W, Fang K. Dynamic Performance of Stacked Packaging Units [J]. Packaging Technology and Science, 2016, 29(10): 491-511.
[18] 王志伟,戚德彬. 两层计算机堆码包装动力学试验研究. 机械工程学报[J], 2017, 53(3): 90-99.
Wang Zhi-wei, QI De-bin. Experimental Study of Dynamic Response of Two Layers Stacked Packaging Units of Computers [J]. Journal of mechanical engineering, 2017, 53(3): 90-99.
[19] GB/T4857.10-2005.“包装—运输包装件基本试验第10部分:正弦变频振动试验方法”[S]. 中国:中国标准出版社,2012.
GB/T4857.10-2005. Packaging—Basic test for transport packages-part 10: Sinusoidal vibration test method using at variable vibration frequency [S]. China: Standards Press of China, 2008.
[20] ASTM D-4169-14. Practice for Performance Testing of Shipping Containers and Systems [S]. USA: ASTM International, 2014.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}