基于膜计算与粒子群算法的盲源分离方法

孙远1,杨峰1,郑晶2,徐茂轩1,裴烁瑾2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 63-71.

PDF(1053 KB)
PDF(1053 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (17) : 63-71.
论文

基于膜计算与粒子群算法的盲源分离方法

  • 孙远1,杨峰1,郑晶2,徐茂轩1,裴烁瑾2
作者信息 +

Blind source separation method based on membrane computing and PSO algorithm

  • SUN Yuan1,YANG Feng1,ZHENG Jing2,XU Maoxuan1,PEI Shuojin2
Author information +
文章历史 +

摘要

为了解决盲源分离方法收敛速度慢、分离性能不高的问题,提出一种基于膜计算(Membrane Computing, MC)和粒子群算法(Particle Swarm Optimization, PSO)的盲源分离方法。算法以分离信号负熵作为粒子群的适应值函数,将粒子均匀分布到各基本膜中,将各基本膜内最优位置输出到表层膜并选择适应值最小的最优位置作为群体最优位置,通过粒子自身最优位置和群体最优位置对种群粒子进行速度和位置的更新。粒子群最优解调整盲源分离的步长函数,进行信号的分离。提出的算法简化了惯性权重取值问题,保证了PSO算法局部搜索的精度,满足了全局搜索的多样性。仿真实验和实例应用表明,提出的算法可以很好地分离混合信号,并且能避免PSO算法的早熟收敛问题,具有更快的收敛速度和更优异的分离性能。

Abstract

In order to solve problems of slower convergence and lower separating performance of the existing blind source separation methods,a new method based on membrane computing (MC) and particle swarm optimization (PSO) was proposed. The separated signals’neg-entropy was taken as the fitness function of PSO. Particles were uniformly distributed into each elementary membrane. The velocity and position of population particles were updated with a particle own optimal position and the population global optimal position. The optimal solution to PSO was used to adjust step function of blind source separation and then separate signals. The proposed algorithm simplified inertia weight’s choosing to ensure the accuracy of PSO local search and satisfy the variety of global search. The simulation and actual application showed that mixing signals can be well separated with this new method and the premature convergence problem of PSO can be avoided; this new method has a faster convergence speed and a more excellent separating performance.
 

关键词

盲源分离 / 膜计算 / 粒子群算法 / 惯性权重

Key words

 blind source separation (BSS) / membrane computing (MC) / particle swarm optimization (PSO) / inertia weight

引用本文

导出引用
孙远1,杨峰1,郑晶2,徐茂轩1,裴烁瑾2. 基于膜计算与粒子群算法的盲源分离方法[J]. 振动与冲击, 2018, 37(17): 63-71
SUN Yuan1,YANG Feng1,ZHENG Jing2,XU Maoxuan1,PEI Shuojin2. Blind source separation method based on membrane computing and PSO algorithm[J]. Journal of Vibration and Shock, 2018, 37(17): 63-71

参考文献

[1] 徐先锋, 段晨东, 刘来君, 等. 一种利用结构特点实现复数域联合对角化解盲源分离新算法研究及应用[J]. 电子学报, 2017, 45(1): 29-36.
XU Xian-feng, DUAN Chen-dong, LIU Lai-jun, et al. Research on a new structural traits based on complex-valued space joint diagonalization algorithm for blind source separation and its applications [J]. Acta Electronica Sinica, 2017, 45(1): 29-36.
[2] 王金贵, 张苏. 基于频域约束独立成分分析的经验模态分解去噪方法[J]. 煤炭学报, 2017, 42(3): 621-629.
WANG Jin-gui, ZHANG Su. EMD denoising method based on frequency domain constrained independent component analysis [J]. Journal of China Coal Society, 2017, 42(3): 621-629.
[3] 李良敏, 任景岩. 基于粒子群算法优化的独立分量分析算法[J]. 振动与冲击, 2015, 34(8): 7-11.
LI Liang-min, REN Jing-yan. A universal particle swarm-optimized independent component analysis algorithm [J]. Journal of Vibration and Shock, 2015, 34(8): 7-11.
[4] Wang Rongjie, Zhan Yiju, Zhou Haifeng. A Class of Sequential Blind Source Separation Method in Order Using Swarm Optimization Algorithm [J]. Circuits Systems and Signal Processing, 2016, 35(9): 3220-3243.
[5] M.Bohm, K.Stadlthanner, P.Gruber, et al. On the Use of Simulated Annealing to Automatically Assign Decorrelated Components in Second-Order Blind Source Separation [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(5): 810-820.
[6] Gaojin Wen, Chunxiao Zhang, Zhaorong Lin, et al. Independent Component Analysis Based on Genetic Algorithms [C]. International Conference on Natural Computation, 2014: 214-218.
[7] 杨杰, 俞文文, 田昊, 等. 基于独立分量分析的欠定盲源分离方法[J]. 振动与冲击, 2013, 32(7): 30-33.
YANG Jie, YU Wen-wen, TIAN Hao, et al. Underdetermined blind source separation method based on independent component analysis [J]. Journal of Vibration and Shock, 2013, 32(7): 30-33.
[8] 李舜酩. 振动信号的盲源分离技术及应用[M]. 北京: 航空工业出版社, 2011.
LI Shun-ming. Blind source separation technology and application of vibration signal [M]. Beijing: Aviation Industry Press, 2011.
[9] P. Commom, et al. Independent component analysis. A new concept?[J]. Signal Processing, 1994, 36(3): 287-314.
[10] 郭慧. 欠定盲源分离算法及在电磁领域的应用研究[D]. 哈尔滨. 哈尔滨工程大学, 2014.
GUO Hui. Underdetermined blind source separation algorithm and applied research in the field of electromagnetic [D]. Harbin. Harbin Engineering University, 2014.
[11] 张朝柱, 张健沛, 孙晓东. 基于自适应粒子群优化的盲源分离[J]. 系统工程与电子技术, 2009, 31(6): 1275-1278.
ZHANG Chao-zhu, ZHANG Jian-pei, SUN Xiao-dong. Blind source separation based on adaptive particle swarm optimization [J]. Systems Engineering and Electronics, 2009, 31(6): 1275-1278.
[12] 朱孝龙, 张贤达. 基于奇异值分解的超定盲信号分离 [J]. 电子与信息学报, 2004, 26(3): 337-343.
ZHU Xiao-long, ZHANG Xian-da. Overdetermined blind source separation based on singular value decomposition [J]. Journal of Electronics & Information Technology, 2004, 26(3): 337-343.
[13] Karvanen J, Koivunen V. Blind separation methods based on Pearson system and its extensions [J]. Signal Processing, 2002, 82(4): 663-673.
[14] 张银雪, 田学民. 基于改进PSO-ICA的地震信号去噪方法[J]. 石油地球物理勘探, 2012, 47(1): 56-62.
ZHANG Yin-xue, TIAN Xue-min. Seismic denoising based on the modified particle swarm optimization-independent analysis [J]. Oil Geophysical Prospecting, 2012, 47(1): 56-62.
[15] Shi Y, Eberhart R C. Empirical Study of Particle Swarm Optimization[C]. Proceedings of the 1999 Congress on Evolutionary Computation. Washington: IEEE, 1999. 1945-1950.
[16] 张葛祥, 潘林强. 自然计算的新分支—膜计算[J]. 计算机学报, 2010, 33(2): 208-214.
ZHANG Ge-xiang, PAN Lin-qiang. A survey of membrane computing as a new branch of natural computing [J]. Chinese Journal of Computers, 2010, 33(2): 208-214.
[17] 张丽平. 粒子群优化算法的理论及实践[D]. 杭州: 浙江大学, 2005.
ZHANG Linping. The Theorem and Practice upon the Particle Swarm Optimization Algorithm [D]. Hangzhou: Zhejiang University, 2005.
[18] 席剑辉,崔健驰,蒋丽英. 基于JADE-ICA的滚动轴承多故障信号盲源分离[J]. 振动与冲击, 2017, 37(5): 231-237.
XI Jianhui, CUI Jianchi, JIANG Liying. JADE-ICA-based blind source separation of multi-fault signals of rolling bearings [J]. Journal of Vibration and Shock, 2017, 37(5): 231-237.
[19] GELLE G, COLAS M, DELAUNAY G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442.

PDF(1053 KB)

Accesses

Citation

Detail

段落导航
相关文章

/