基于现场液化试验的砂土孔压与剪应变关系研究

付海清1,2,袁晓铭1,汪云龙1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 158-164.

PDF(1608 KB)
PDF(1608 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 158-164.
论文

基于现场液化试验的砂土孔压与剪应变关系研究

  • 付海清1,2,袁晓铭1,汪云龙1
作者信息 +

Pore pressure-shear strain relationship of saturated sand based on in-situ liquefaction tests

  • FU Haiqing 1, 2 ,YUAN Xiaoming 1 ,WANG Yunlong 1
Author information +
文章历史 +

摘要

采用自行发展的现场液化试验技术与方法,设计完成两种形式的现场试验,研究了饱和砂土液化过程中孔压和剪应变关系,给出了两者关系的定量表达式,并与他人基于动三轴试验、现场液化试验得到的结果进行了对比和讨论。主要认识如下:(1)加速度对饱和砂土孔压与剪应变的关系影响较小,但其影响程度大于相对密度;(2)提出用数学和液化物理过程表达一致的公式 [U=1-exp(aγ+b),U≥0]来定量描述这种关系;(3)当饱和砂土剪应变在0.03~0.3%时,孔压迅速发展。剪应变在0.5%左右时,孔压比达到1。这一结果,与Dobry动三轴试验结果基本一致,而与Chang现场试验结果存在差异,原因是Chang的土体剪应变为有限元方法计算液化大变形而非用实测位移得到。

Abstract

Based on the self-developed in-situ liquefaction testing technology, two different types of in-situ liquefaction tests were carried out.The pore pressure-shear strain relationship of saturated sand was studied and its quantitative expression was presented.Besides, the simulation results were compared with the dynamic triaxial test results and the in-situ liquefaction test results by others.The main conclusions are as follows.The acceleration slightly affects the pore pressure-shear strain relationship of saturated sand, but its influence is larger than that of the relative density.An equation, [U=1-exp(aγ+b), U≥0], Which is consistent with the mathematical expression of the physical process of soil liquefaction, was proposed to quantitatively describe this relationship.When the shear strain of saturated sand is at the range of 0.03%~0.30%, the residual pore pressure increases quickly.Furthermore, when the shear strain of saturated sand is about 0.5%, the residual pore pressure ratio can reach the maximum value 1.These results are consistent with those obtained from strain-controlled dynamic triaxial tests by Dobry, but have discrepancy with these obtained from in-situ liquefaction tests by Chang.The unexpected results were analyzed and it is found the discrepancy is caused by the unadapted computation method for shear strain adopted by Chang.In the process of soil liquefaction, large deformation occurs, and it is unreliable to calculate the shear strain by the finite element method.

关键词

砂土液化 / 现场试验 / 孔压 / 剪应变

Key words

soil liquefaction / in-situ test / pore pressure / shear strain

引用本文

导出引用
付海清1,2,袁晓铭1,汪云龙1. 基于现场液化试验的砂土孔压与剪应变关系研究[J]. 振动与冲击, 2018, 37(18): 158-164
FU Haiqing 1, 2,YUAN Xiaoming 1,WANG Yunlong 1. Pore pressure-shear strain relationship of saturated sand based on in-situ liquefaction tests[J]. Journal of Vibration and Shock, 2018, 37(18): 158-164

参考文献

[1] 赖杰, 郑颖人, 李秀地, 等. 自重、渗流及地震耦合作用下人工岛动力稳定性分析[J].振动与冲击, 2016, 35(5): 175-180.
LAI Jie, ZHENG Yingren, LI Xiudi, et al .Dynamic stability of an artificial island triggered by self-weight, seepage and earthquake[J]. Journal of vibration and shock, 2016, 35(5): 175-180.
[2] 左熹, 周恩全, 任艳. 考虑液化场地流变效应的地下结构侧向作用力研究[J]. 振动与冲击, 2016, 35(19): 58-62.
ZUO Xi, ZHOU Enquan, REN Yan. Lateral force of underground structures considering rheological effect of liquefied[J]. Journal of vibration and shock, 2016, 35(19): 58-62.
[3] Martin G R, Finn W D L, Seed H B. Fundamentals of liquefaction under cyclic loading[J]. Journal of the Geotechnical Engineering Division, 1975, 101(5): 423- 438.
[4] 石兆吉. 循环等幅应变作用下饱和砂土中孔隙水压力的变化规律[J]. 世界地震工程, 1987, 3(3): 35-39.
Shi Zhao-ji. Pore water pressure rise of saturated sand under cyclic uniform strain loading[J]. World Earthquake Engineering, 1987, 3(3):35-39.
[5] 徐干成. 饱和砂土应力应变控制试验动力特性的比较[J]. 同济大学学报, 1999, 27(1): 38-42.
Xu Gancheng. Comparison between stress-controlled and strain-controlled experiments on dynamic behaviors of saturated sands[J]. Journal of Tongji University, 1999, 27(1):38-42.
[6] Dobry R, Ladd R S, Yokel F Y, et al. Prediction of pore water pressure buildup and liquefaction of sands during earthquake by the cyclic strain method[C]. NBS Building Science Series 138, National Bureau of Standards, Gaithersburg, Maryland, 150, 1982.
[7] Hsu C, Vucetic M. Volumetric threshold shear strain for cyclic settlement[J]. Geotechnical and Geoenvironmental Engineering, 2004, 130(1), 58-70.
[8] 沈瑞福, 王洪瑾, 周克骥, 等. 动主应力旋转下砂土孔隙水压力发展及海床稳定性判断[J]. 岩土工程学报, 1994, 16(3): 70-78.
SHEN Ruifu, WANG Hongjin, ZHOU Keji, et al. Building-up of pore water pressure under cyclic rotation of principal stress and evaluation of stability of seabed deposit[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 70-78.
[9] 何杨, 栾茂田, 许成顺, 等. 复杂应力条件下松砂振动孔隙水压力与体变特性的试验研究[J]. 地震工程与工程振动, 2005, 25(6): 127-134.
He Yang, Luan Mao-tian, Xu Cheng-shun, et al. Experimental study on cyclic pore water pressure and volumetric changes of saturated loose sands under complex stress condition[J]. Journal of Earthquake Engineering and Vibration, 2005, 25(6):127-134.
[10] 王艳丽, 王勇. 饱和砂的动孔压演化特性试验研究[J]. 同济大学学报(自然科学版), 2009, 37(12): 1603-1607.
WANG Yanli, WANG Yong. Experimental study on evolutionary characteristics of dynamic pore water pressure of saturated sand[J]. Journal of Tongji University: Natural Science, 2009, 37(12): 1603-1607.
[11] 徐 斌, 孔宪京, 邹德高, 等.饱和砂砾料振动孔压与轴向应变发展模式研究[J]. 岩土力学, 2006, 27(6): 925-928.
XU Bin, KONG Xianjing, ZOU Degao, et al. Study of dynamic pore water pressure and axial strain in saturated sand-gravel composites[J]. Rock and Soil Mechanics, 2006, 27 (6): 925-928.
[12] 王亚军, 金峰, 张楚汉, 等. 舟山海域海相砂土循环激振下的液化破坏孔压模型[J]. 岩石力学与工程学报, 2013, 32(3): 582-596.
WANG Yajun, JIN Feng, ZHANG Chuhan, et al. Liquefaction failure pore water pressure model of zhoushan marine sandy soil under cyclic exciting loading[J]. Chinese Journal of Rock Mechanics and Engineering. 2013, 32(3): 582-596.
[13] Chang W J, Rathje E M, Stokoe II K H, et al. In situ pore-pressure generation behavior of liquefiable sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 921-931.
[14] Cox B R, Stokoe II K H, Rathje E M. An in-situ test method for evaluating the coupled pore pressure generation and nonlinear shear modulus behavior of liquefiable soils[J]. ASTM Geotechnical Testing Journal, 2009, 32(1): 11-21.
[15] 王维国, 陈育民, 张意江, 等. 饱和砂土中浅埋单药包爆炸液化特性分析[J]. 岩土工程学报, 2016, 38(2): 355-361.
WANG Weiguo, CHEN Yumin, ZHANG Yijiang, et al. Characteristics of liquefaction induced by single shallow-buried detonation in saturated sand[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 355-361.
[16] 付海清, 袁晓铭. 重塑饱和砂土的现场液化试验研究[J].应用基础与工程学报, 2017(修审).
Fu Haiqing, YUAN Xiaoming. In-situ liquefaction test on remoulded saturated sand models[J]. Journal of Basic Science and Enginering, 2017(Review).
[17] 付海清, 袁晓铭, 陈龙伟. 基于重塑饱和砂土模型的现场液化试验方法[J]. 地震工程学报, 2015, 37(1): 16-20.
Fu Haiqing, YUAN Xiaoming, CHEN Longwei.A method for in-situ liquefaction test based on reconstituted saturated sand model[J]. China Earthquake Engineering Journal, 2015, 37(1): 16-20.
[18] 付海清, 陈龙伟, 李雨润, 等. 人工激振下现场液化试验初步研究[J]. 世界地震工程, 2010, 26(S1): 235-240.
Fu Haiqing, Chen Longwei, Li Yurun, et al. Preliminary study on in-situ liquefaction tests under artificial dynamic loading[J]. World Earthquake Engineering, 2010, 26(S): 235-240.
[19] 付海清, 袁晓铭. 液化对地表运动影响的现场试验研究[J],地震工程与工程振动, 2016, 36(5): 99-106.
Fu Haiqing, YUAN Xiaoming. Effect of soil liquefaction on ground motion using artificial vibration[J]. Journal of Earthquake Engineering and Vibration, 2016, 36(5):99-106.

PDF(1608 KB)

386

Accesses

0

Citation

Detail

段落导航
相关文章

/