多档导线面内动态特性及共振条件分析

刘小会1,胡友1,严波2,蔡萌琦3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 18-29.

PDF(2966 KB)
PDF(2966 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 18-29.
论文

多档导线面内动态特性及共振条件分析

  • 刘小会1,胡友1,严波2,蔡萌琦3
作者信息 +

Dynamic characteristic and resonance conditions  of multi-span conductors#br#  

  • LIU Xiaohui1,HU You1,YAN Bo2,CAI Mengqi3
Author information +
文章历史 +

摘要

基于振动理论给出了连续档导线频率计算公式,应用子结构理论获得连续档导线的模态函数。根据理论公式得到不同档数及张力情况下连续档导线频率值及模态形状,与相应的有限元结果吻合,验证了理论公式的准确性。根据频率理论公式揭示了连续档导线几何参数对无量纲频率的影响规律,预测了连续档导线不同模态之间产生共振的条件,结果表明连续档导线产生面内多模态耦合的条件与单档导线区别明显。采用Galerkin方法离散连续档导线控制方程得到了多模态耦合的非线性常微分方程,为进一步研究连续档导线内共振时的分岔行为奠定了理论基础。

Abstract

The calculation formulas for natural frequencies of continuous spans conductors based on the vibration theory were proposed, and the mode shapes based on the sub-structure approach were obtained.The natural frequencies and mode shapes calculated by the formulas under different span numbers and tension forces were in good agreement with the results of the finite element method, and thus the reliability of the theoretical formulas was verified.The influence of geometric parameters of continuous spans conductors on the dimensionless frequencies was revealed.The conditions for the resonance between different modes of continuous spans conductors were investigated and it is shown that the multi-mode coupling conditions were obviously different from those of single span ones.The motion equations of continuous spans conductors were discretized by using Galerkin procedure, then the non-linear ordinary-differential equations for the multi-mode coupled vibration were obtained.These results establish the base for the study of bifurcation behaviors in the strong internal resonance of continuous spans conductors.

关键词

模态 / 固有频率 / 连续档 / 输电线 / 共振条件

Key words

mode / natural frequency / continuous spans / transmission lines / resonance condition

引用本文

导出引用
刘小会1,胡友1,严波2,蔡萌琦3. 多档导线面内动态特性及共振条件分析[J]. 振动与冲击, 2018, 37(18): 18-29
LIU Xiaohui1,HU You1,YAN Bo2,CAI Mengqi3. Dynamic characteristic and resonance conditions  of multi-span conductors#br#  [J]. Journal of Vibration and Shock, 2018, 37(18): 18-29

参考文献

[1]Irvine H M,Caughey T K. The linear theory of free vibration of a suspended cable. Proceedings of the Royal Society[C].Lond,1974,341:299-315.
[2]Rega G,Lacarbonara W,Nayfeh A H,Chin C M. Multiple resonances in suspended cables: direct versus reduced-order models[J]. International Journal of Non-linear mechanics,1999,34:901-924.
[3]Rega G. Nonlinear vibrations of suspended cables-Part 1[J].American society of mechanical enginees,2004,57(6):444- 475.
[4]Rega G, Warminski J. Theoretical and experimental nonlinear vibrations of sagged elastic cables[J]. Nonlinear dynamic phenomena in mechanics, 2012,181:159-210.
[5] Luongo A,Daniele Z,Giuseppe P. Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables[J].Journal of Sound and Vibration.2008, 315:324-329 .
[6] Luongo A,Daniele Z,Giuseppe P. On the effect of twist angle on nonlinear galloping of suspended cables[J].Computers and Structuress.2009,87(15):1-12
[7]Desai Y.M,Shah A.H,Popplewell N. Galloping analysis for 2-degree-of-freedom oscillator[J]. Journal of Engineering Mechanics-ASCE,1990,116(12):2583-2602.
[8]胡霁,郭若颖,裴长生,闵绚, 邵瑰玮,万丽芬.特高压交流线路的单档和3档舞动计算分析[J],高压电技术,2013,39(12): 3010-3014.
HU Ji,GUORuoying,PEI Chang-Sheng,MIN Xuan,SHAO Gui-Wei,WAN Li-Fen. Calculative Study on Galloping of Single-span and Three-span UHV Transmission Lines[J]. High Voltage Engineering.2013,39(12):3010-3014(in Chinese).
[9]王昕,楼文娟.覆冰导线舞动数值解及影响因素分析[J].工程力学,2010, 27(sup 1):290-293.
WANG Xin,LOU Wen-Juan. Numerical Approach to the Gallop of iced conductor[J]. Engineering Mechanics,2010,27 (sup 1):290-293(in Chinese).
[10]霍涛,晏致涛,李正良,颜志淼.考虑弹性边界条件曲梁的覆冰输电线舞动[J],振动与冲击,2013,32(21):86-91.
HUO Tao,YAN Zhi-Tao,LI Zheng-Liang,YAN Zhi-Miao,A curved-beam model considering elastic boundary conditions for iced transmission line galloping[J], Journal of Vibration and Shock, 2013,32(21):86-91(in Chinese).
[11]王丽新,杨文兵,杨新华,袁俊杰.输电线路舞动的有限元分析[J].华中科技大学学报,2004,21(1):77-80.
WANG Li-Xin,YANG Wen-Bing,YAN Xin-Hua,YUAN Jun-Jie. Finite element analysis for galloping process of transmission lines[J].Journal of Huazhong University of Science and Technology, 2004,21(1):77-80 (in Chinese).
[12]李黎,陈元坤,夏正春,曹化锦.覆冰导线舞动的非线性数值仿真研究[J].振动与冲击,2011,30(8):108-111.
LI Li,CHAO Yuan-Kun,XIA Zheng-Chun,CAO Hua-Jin. Nonlinear numerical simulation study of iced conductor galloping[J].Journal of vibration and shock,2011,30 (8) :108-111(in Chinese).
[13] Zhang Q, Popplewell N, Shah A.H. Galloping of bundle conductor[J]. Journal of Sound and Vibration,2000,234 (1):115-134.
[14]王磊.酒杯塔塔线耦合体系覆冰导线舞动分析[D].天津:天津大学,2011.
Wang L. Analysis of galloping of iced conductor on cup type tower-line coupling system[D].Tianjing: Tianjin University of,2011.
[15] Xie X.Z, Hu X, Peng J, Wang Z.Q. Refined modeling and free vibration of two-span suspended transmission lines[J]. Acta Mech,2017, 228:673-681.
[16] Yi Z.P, Wang Z.Q, Zhou Y, Stanciulescu I. Modeling and vibratory characteristics of mass-carrying cable system with multiple pulley supports in span range[J]. Applied Mathematical Modelling,2017,49:60-68.

PDF(2966 KB)

Accesses

Citation

Detail

段落导航
相关文章

/