考虑充气压力效应的重载轮胎面内振动模态建模及参数辨识

刘志浩 高钦和

振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 184-192.

PDF(4533 KB)
PDF(4533 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 184-192.
论文

考虑充气压力效应的重载轮胎面内振动模态建模及参数辨识

  • 刘志浩   高钦和
作者信息 +

Analytical modelling of in-plane vibration modes and structural parameters identification of heavy-loaded radial tires with different inflation pressure

  • LIU Zhihao,GAO Qinhe
Author information +
文章历史 +

摘要

针对重载轮胎胎侧径向长度和胎体宽度比值(扁平比)接近1的结构特点,提出考虑不同充气压力的轮胎面内中低频试验模态分析、动力学建模和参数辨识方法。基于欧拉梁理论,考虑胎体面内弯曲、充气压力引起的胎体梁轴向力和充气压力敏感的胎侧径向刚度,建立轮胎柔性胎体-周向分布胎侧单元-轮毂质量块耦合动力学方程;考虑柔性胎体与周向分布胎侧单元的耦合效应,开展重载轮胎不同充气压力的面内振动模态试验,获取轮胎不同充气压力的共振频率试验值;以重载轮胎不同充气压力的面内共振频率试验值和解析解的误差作为目标函数,利用遗传算法对轮胎的未知结构参数进行辨识,并对高阶模态的固有频率进行预测。结果表明:(1)重载轮胎的面内振动体现为柔性胎体与周向分布胎侧单元的耦合振动,其中在0~180Hz内为同向振动,在180~300Hz内为反向振动;(2)随着充气压力的增加,重载轮胎各阶共振固有频率增大;(3)充气压力引起的胎体轴向力的变化和充气压力敏感的胎侧径向刚度效应可表征不同充气压力的轮胎面内振动特性。

Abstract

The experimental modal analysis, dynamic modeling and structural parameter identification on the  in-plane vibration modals of heavy loaded radial tires with different inflation pressure were put forward.The in-plane bending characteristic, axle pre-tension caused by the inflating pressure and sidewall radial stiffness sensitive to the  inflation pressure were taken into consideration and the coupled kinematic equation for the flexible tread, distributed sidewall elements and rim was modeled based on Euler beam theory.In-plane experimental modal tests and analysis under different inflation pressure were presented and experimental modal parameters under different inflation pressure were obtained.Taking the error between the experimental modal resonant frequency and analytical modal resonant frequency as the object, structural parameters of the tire were identified by the genetic algorithm based on the experimental and analytical modal parameters obtained and the higher order modal frequencies were predicted with the analytic model. The experimental and theoretical results show that: the  in-plane vibration of heavy loaded radial tires can be charactered as the coupled vibration of flexible tread and distributed sidewall elements, and the vibration within 0-180 Hz appears in the same-direction modes, while the vibration within 180-300 Hz is shown in the opposite-direction  modes; the modal resonant frequency increases with the increase of inflation pressure; the in-plane vibration characteristics under different inflation pressure can be featured using the axle pre-tension of flexible tread caused by the inflating pressure and the sidewall radial stiffness sensitive to the inflation pressure.

关键词

轮胎动力学 / 重载子午胎 / 充气压力效应 / 充气压力敏感的胎侧径向刚度 / 试验模态分析 / 参数辨识

Key words

Tire dynamics / heavy-loaded radial tire / inflation pressure effect / sidewall radial stiffness sensitive with inflation pressure / Experimental modal analysis / parameters identification

引用本文

导出引用
刘志浩 高钦和. 考虑充气压力效应的重载轮胎面内振动模态建模及参数辨识[J]. 振动与冲击, 2018, 37(18): 184-192
LIU Zhihao,GAO Qinhe. Analytical modelling of in-plane vibration modes and structural parameters identification of heavy-loaded radial tires with different inflation pressure[J]. Journal of Vibration and Shock, 2018, 37(18): 184-192

参考文献

[1] Li Shaohua, Yang Shaopu, Chen Liqun.  Investigation on cornering brake stability of a heavy-duty vehicle based on a nonlinear three-directional coupled model[J]. Applied Mathematical Modelling, 2016 (40):6310~6323 .
[2] Alireza Pazooki, SubhashRakheja, DongpuCao. Modeling and validation of off-road vehicle ride dynamics [J]. Mechanical Systems and Signal Processing. 2012,28:79–695.
[3] Amir Soltani, Avesta Goodarzi, Mohamad Hasan. Optimizing Tire Vertical Stiffness Based on Ride, Handling, Performance, and Fuel Consumption Criteria[J]. Journal of Dynamic Systems, Measurement, and Control, 2015, (137), 121004-10.
[4] J.P. Pauwelussen, L. Gootjes, C. Schr.oder. Full vehicle ABS braking using the SWIFT rigid ring tyre model[J]. Control Engineering Practice, 2003(11): 199~207.
[5] 赵愿玲,左曙光. 考虑驱动力影响的轮胎侧向自激振动分析[J]. 振动与冲击,2012,31(22):101~111.
ZHAO Yuan-ling,ZUO Shu-guang. Lateral self-excited vibration analysis for a type considering driving force [J]. Journal of Vibration and Shock, 2012,31(22):101~111.
[6] 郭孔辉. Uni-Tire统一轮胎模型[J]. 机械工程学报,2016,52 (12):90~99.
GUO Konghui. Uni Tire: Unified Tire Model[J].Journal of mechanical engineering, 2016,52 (12):90~99.
[7] Joško Deur , Jahan Asgari, Davor Hrovat. A 3D Brush-type Dynamic Tire Friction Model[J]. Vehicle System Dynamics, 2004, 42(3):133~173.
[8] 赵又群,李小龙,张明杰,臧利国,李波. 机械弹性车轮随机振动理论与数值分析[J].哈尔滨工业大学学报,2015,47(7):47~51.
ZHAO Youqun,LI Xiaolong,ZHANG Mingjie,ZANG Liguo,LI Bo. Theoretical and numerical analysis on the random vibration of mechanical elastic wheel[J]. Journal of Harbin Institute of Technology, 2015,47(7):47~51.
[9] DanielGarcia-Pozuelo,JorgeYunta, Oluremi Olatunbosun, Xiaoguang Yang. A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic[J]. Sensors 2017 (874):1~17.
[10] Stijn Boere, InesLopez Arteaga,Ard Kuijpers, Henk Nijmeijera. Tyre/road interaction model for the prediction of road texture influence on rolling resistance[J]. International Journal of Vehicle Design,2014,65(2/3):815~841.
[11] 危银涛,冯希金,郑小刚,冯启章. 乘用车子午线轮胎泵浦噪声机理的实验-数值混合分析方法[J]. 振动与冲击,2015,34(11):165-172.
WEI Yin-tao,FENG Xi-jin,ZHENG Xiao-gang. A hybrid experimental-numerical analysis for radial tire air pumping noise generation mechanism [J]. Journal of Vibration and Shock, 2015,34(11):165-172.
[12] 左曙光,冯朝阳,吴旭东,段向雷. 轮胎附着特性的胎体纵向振动建模与分析[J]. 振动与冲击,2015,34(10):50~55.
ZUO Shu-guang,FENG Zhao-yang,WU Xu-dong,DUAN Xiang-lei. Tread's longitudinal vibration modeling and analysis for attachment characteristics of tire [J]. Journal of Vibration and Shock, 2015,34(10):50~55.
[13] 左曙光,毛钰,吴旭东,段向雷. 基于柔性环轮胎模型的电动轮固有特性分析[J]. 振动与冲击,2016,35(3):41-47.
ZUO Shu-guang,MAO Yu,WU Xu-dong. Inherent characteristic analysis of the electrical wheel based on a flexible ring model[J]. Journal of Vibration and Shock, 2016,35(3):41-47.
[14] Chongfeng Wei, Oluremi A.O. Transient dynamic behaviour of finite element tire traversing obstacles with different heights. Journal of Terramechanics, 2014, 56,1~16.
[15] Danilo Beli, Priscilla Brand, Jos e R. Vibration Analysis of Flexible Rotating Rings Using a Spectral Element Formulation. Journal of Vibration and Acoustics. 2015, (137), 041003,1-11.
[16] Dishan Huang, LiangTang,RuiCao. Free vibration analysis of planar rotating rings by wave propagation[J]. Journal  of Sound and Vibration, 2013 (332):4979~4997.
[17] KRYLOV, V.V. and GILBERT, O. On the theory of standing waves in tyres at high vehicle speeds. Journal of Sound and Vibration. 2010,329 (21),pp. 4398-4408.
[18] 臧利国,赵又群,李波,王健,付宏勋. 非充气机械弹性车轮静态径向刚度特性研究[J].兵工学报,2015,36(2):355-362.
ZANG Li-guo,ZHAO You-qun,LI Bo,WANG Jian,FU Hong-xun. Static radical Stiffness Characteristics of Non-pneumatic Mechanical Elastic Wheel[J]. Acta Armamentarii,2015,36(2):355-362.
[19] Alain LeBot, ZakiaBazari, PhilippeKlein, JoëlLelong. tatistical analysis of vibration in tyres [J]. Journal of Sound and Vibration. 2017, 392, 187-199.
[20] C. Lecomte a, W.R.Graham, M.Dale. A shell model for tyre belt vibrations[J]. Journal of Sound and Vibration .2010(329): 1717~1742.

 

PDF(4533 KB)

481

Accesses

0

Citation

Detail

段落导航
相关文章

/