航空输流管道动力学的非参模型研究

曹建华1,2,刘永寿1,刘伟1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 43-47.

PDF(862 KB)
PDF(862 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (18) : 43-47.
论文

航空输流管道动力学的非参模型研究

  • 曹建华1,2,刘永寿1,刘伟1
作者信息 +

Dynamics analysis of fluid-conveying pipes with a nonparametric model

  • CAO Jianhua1,2,LIU Yongshou1,LIU Wei1
Author information +
文章历史 +

摘要

针对航空工业中管道上卡箍支承的不确定性,采用适用于系统误差的非参方法,对输流管道进行建模、仿真并预测管道振动特性。将输流直管上卡箍简化为简支和扭转弹簧,采用尺度为3,阶数为4的区间样条小波有限元离散管道振动微分方程,将卡箍所影响的系统刚度矩阵视为不确定性,采用非参方法生成随机模型。通过数值结果对比,对于频率响应曲线,非参模型的可信区间完美包含均值模型,随着频率的增大,不确定性对高阶频率影响越大。对于频率随流速变化曲线,非参模型的可信区间完美地包含均值模型,随着流速的增大,不确定性对每阶频率的实部影响越来越小,而对虚部影响越来越大,但是不确定性对发散和颤振失稳没有影响。
 

Abstract

In order to model the uncertainty of clamps of a pipeline in the aviation industry, a nonparametric method was adopted to model, simulate and predict the vibration characteristics of a fluid-conveying pipe.The clamp was modelled as simply supported and attached with a torsion spring.The wavelet-based finite element method was used to discretize the governing differential equations of the fluid-conveying pipe with clamps at two ends.The random global stiffness matrix, which models the effect of uncertainties of clamps, was generated by the nonparametric method.As shown in the numerical results, the confidence interval of the frequency response curves of the nonparametric model contains the mean model’s curves perfectly.As the frequency increases, the greater the influence of uncertainty at higher frequencies.For the case of the first four frequencies varying with the fluid velocity, the confidence interval of the curves of nonparametric model also contains the mean model’s curves perfectly.With the fluid velocity increasing, the influence of uncertainty on the real part of frequencies becomes smaller while the influence of uncertainty on the imaginary part of frequencies becomes greater.However, the uncertainty has no effect on the divergence and flutter instability.
 
 

关键词

输流管道
/ 卡箍 / 小波有限元 / 非参模型

Key words

 fluid-conveying pipe / clamp / wavelet-based finite element / nonparametric model.

引用本文

导出引用
曹建华1,2,刘永寿1,刘伟1. 航空输流管道动力学的非参模型研究[J]. 振动与冲击, 2018, 37(18): 43-47
CAO Jianhua1,2,LIU Yongshou1,LIU Wei1. Dynamics analysis of fluid-conveying pipes with a nonparametric model[J]. Journal of Vibration and Shock, 2018, 37(18): 43-47

参考文献

[1] Paidoussis M P. Fluid-structure interactions: slender structures and axial flow[M]. Academic press, 1998.
[2] Dianlong Yu, Wen J, Shen H, et al. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads[J]. Physics Letters A, 2012, 376(45): 3417-3422.
[3] Chang G H, Modarres-Sadeghi Y. Flow-induced oscillations of a cantilevered pipe conveying fluid with base excitation[J]. Journal of Sound and Vibration, 2014, 333(18): 4265-4280.
[4] Kheiri M, Païdoussis M P. On the use of generalized Hamilton׳ s principle for the derivation of the equation of motion of a pipe conveying fluid[J]. Journal of Fluids and Structures, 2014, 50: 18-24.
[5] Kheiri M, Païdoussis M P, Del Pozo G C, et al. Dynamics of a pipe conveying fluid flexibly restrained at the ends[J]. Journal of Fluids and Structures, 2014, 49: 360-385.
[6] Qian Q, Wang L, Ni Q. Nonlinear responses of a fluid-conveying pipe embedded in nonlinear elastic foundations[J]. Acta Mechanica Solida Sinica, 2008, 21(2): 170-176.
[7] 王琳, 倪樵. 具有非线性运动约束输液曲管振动的分岔[J]. 振动与冲击, 2006, 25(1):67-69.
Wang Lin, Ni Qiao, Vibration bifurcation of a curved pipe conveying fluid with nonlinear constraint[J]. Journal of Vibration and Shock, 2006, 25(1):67-69.
[8] Wang L. Flutter instability of supported pipes conveying fluid subjected to distributed follower forces[J]. Acta Mechanica Solida Sinica, 2012, 25(1): 46-52.
[9] Ghayesh M H, Païdoussis M P, Amabili M. Nonlinear dynamics of cantilevered extensible pipes conveying fluid[J]. Journal of Sound and Vibration, 2013, 332(24): 6405-6418.
[10] Soize C. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics[J]. Probabilistic engineering mechanics, 2000, 15(3): 277-294.
[11] Soize C. Random matrix theory for modeling uncertainties in computational mechanics[J]. Computer methods in applied mechanics and engineering, 2005, 194(12): 1333-1366.
[12] Soize C, Capiez-Lernout E, Durand J F, et al. Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 198(1): 150-163.
[13] Soize C. Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[J]. International Journal for Numerical Methods in Engineering, 2010, 81(8): 939-970.
[14] Ritto T G, Soize C, Rochinha F A, et al. Dynamic stability of a pipe conveying fluid with an uncertain computational model[J]. Journal of Fluids and Structures, 2014, 49: 412-426.
[15] Ritto T G, Sampaio R, Rochinha F A. Model uncertainties of flexible structures vibrations induced by internal flows[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33(3): 373-380.
[16] RITTO T.G., SAMPAIO R., CATALDO E.. Timoshenko beam with uncertainty on the boundary conditions, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2008, vol. 30, no. 4, pp. 291–299.
[17] Han J G, Ren W X, Huang Y. A spline wavelet finite element formulation of thin plate bending[J]. Engineering with Computers, 2009, 25(4): 319-325.
[18] Xiang J W, Long J Q, Jiang Z S. A numerical study using Hermitian cubic spline wavelets for the analysis of shafts[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(9): 1843-1851.
[19] Chen X F, Yang S, Ma J, et al. The construction of wavelet finite element and its application[J]. Finite Elements in Analysis and Design, 2004, 40(5): 541-554.
[20] J. C. Goswami, A. K. Chan, and C. K. Chui. On solving first kind integral equations using wavelets on a bounded interval[J], IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 6, pp. 614–622.

PDF(862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/