对于多层剪切时变结构,利用子结构技术将发生时变的局部结构提取出来作为子结构,将交界面上的内力当做外荷载施加给子结构,建立子结构振动微分方程,通过小波变换将子结构的时变参数用小波展开系数来表示,将子结构微分方程转变为线性方程组,将时变参数识别问题转换为时不变小波系数求解问题。各时变参数的分解层数通过Akaike信息准则来确定。由求解得到的小波系数进行重构得到待识别的时变参数。最后,对一个多层剪切时变结构模型进行了数值分析。分析结果表明,提出的方法可以只用局部子结构的响应数据对时变参数进行识别,方法具有一定的抗噪性。
Abstract
For multi-layer shear time-varying structures, local structures with time-varying happening were extracted as sub-structures using the sub-structure method, internal forces on interfaces were exerted on substructures as external loads, and then the dynamic differential equations of substructures were built.Based on wavelet transform, time-varying parameters were expressed with wavelet expanding coefficients, and then dynamic differential equations of substructures were converted to linear algebraic equation sets, so problems for identification of time-varying parameters were converted into ones for time-invariant wavelet coefficients solving.Decomposition layers of different time-varying parameters were determined using Akaike information criterion.Time-varying parameters were reconstructed using the solved wavelet coefficients.Finally, a model for a multi-layer shear time-varying structure was numerically stimulated, and the analysis results showed that the proposed method can be used to identify time-varying parameters of multi-layer shear structures with response data of local substructures and this method has a certain anti-noise capacity.
关键词
子结构 /
小波变换 /
参数识别 /
多层剪切结构 /
时变参数
{{custom_keyword}} /
Key words
substructure /
wavelet transform /
parameter identification /
multi-layers shear type structure /
time-varying parameter
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨武, 刘莉, 周思达, 马志赛. 前后向时间序列模型联合估计的时变结构模态参数辨识.振动与冲击.2015, 34(3):129-135
YANG Wu,LIU Li,ZHOU Si-da,MA Zhi-sai. Modal parameter identification of time-varying structures using a forward-backward time series model based on joint estimation.Journal of vibration and shock. 2015, 34(3): 129-135
[2] 周思达, 刘莉, 杨武, 马志赛. 基于矩阵分式多项式时变结构模态参数最小二乘辨识.振动与冲击.2014,33(6):118-123
ZHOU Si-da,LIU Li,YANG Wu,MA Zhi-sai. Matrix fraction polynomial model-based least square estimation of modal parameters for linear time-varying structures.Journal of vibration and shock.2014,33(6):118-123
[3] 于开平,牟晓明.基于前向神经网络的非线性时变系统辨识改进EKF算法.振动与冲击.2010,29(8):5-9
YUKai-ping, MOUXiao-ming.Improved EKF algorithm s for nonlinear time-varying system identification based on feed forward neural network.Journal of vibration and shock.2010,29(8):5-9
[4] 李会娜, 史治宇.基于随机激励响应的时变系统物理参数子空间识别方法研究[J]. 工程力学, 2008(9): 46-51.
LI Hui-na, SHI Zhi-yu. Subspace-based physical parameter identification of time-varying system using random excitation response[J]. Engineering Mechanics, 2008(9): 46-51.
[5] 静大海, 刘晓平. 基于子空间法与子结构法时变结构连接处的物理参数在线辨识[J].振动与冲击, 2007, 26(11): 59-63.
JING Da-hai, LIU Xiao-ping. On-line identification of physical parameters at joint in time-varying structure system based on subspace and substructure method[J]. Journal of Vibration and shock.2007, 26(11):59-63.
[6] X.Xu,Z. Y. Shi, Q. You,Identification of linear time-varying systems using a wavelet-based state-space method.Mechanical Systems and Signal Processing,2012,26(1):91-103.
[7] 许鑫,史治宇.用于时变系统参数识别的状态空间小波方法 [J]. 工程力学, 2011(3): 23-28.
Xu Xin, Shi Zhi-yu. Parameter identification for time-varying system using state space and wavelet method[J]. Engineering Mechanics, 2011(3): 23-28.
[8] Yang J N, Lin S. Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique[J]. Journal of Engineering Mechanics, 2005, 131(3): 290-298.
[9] 李书进, 李文化. 基于自适应卡尔曼滤波的时变结构参数估计[J]. 广西大学(自然科学版), 2004, 29(2): 146-149.
LI Shu-jin, LI Wen-hua. parameter estimation of time-varying structures by the adaptive kalman filter[J].Journal of Guangxi University(Nat Sci Ed) , 2004, 29(2): 146-149.
[10] Shi Z Y, Law S S, Xu X. Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMD method[J]. Journal of Sound & Vibration, 2009, 321(321):572-589.
[11] 易伟建, 段素萍. 基于Hilbert-Huang 变换的框架结构非线性地震响应分析[J].动力学与控制学报,2007, 5(3): 249-254.
YI Wei-jian DUAN Su-ping.The nonlinear analysis of frame seismic response based on hilbert-huang transform[J].Journal of Danamics and Control, 2007, 5(3): 249-254.
[12] Wang Z, Chen G. Recursive Hilbert-Huang transform method for time-varying property identification of Linear shear-type buildings under base excitations[J]. Journal of Engineering Mechanics, 2013, 138(6): 631-639.
[13] Tsatsanis M K , Giannakis G B. Time-varying system identification and Model Validation using Wavelets. [J]. Transacations On Signal Processing. 1993, 41(12):3512-3523.
[14] 任宜春,易伟建, 谢献忠.地震作用下结构时变物理参数识别[J].地震工程与工程振动,2007, 27(4): 98-102.
REN Yi-chun, YI Wei-jian, XIE Xian-zhong.Identification of time-variant physical parameters of structure under earthquake loading[J].Journal of earthquake engineering and engineering vibrtion ,2007, 27(4): 98-102.
[15] Chang C C, Shi Y F. Identification of time-varying hysteretic structures using wavelet multiresolution analysis[J]. International Journal of Non-linear Mechanics. 2010, 45:21-34.
[16] Chang C C, Shi Y F. Identification of time-varying hysteretic structures using wavelet multiresolution analysis[J]. International Journal of Non-linear Mechanics. 2010, 45:21-34.
[17] 王超, 朱宏平, 吴巧云,等. 基于小波多分辨率分析的结构时变参数识别[J]. 华中科技大学学报(自然科学版), 2016,44(10):31-35.
WANG Chao, ZHU Hong-ping, WU Qiao-yun, et al. Time-varying Parameter Identification of structure using wavelet multiresolution analysis[J]. J.Huazhong Univ. of Sci. & Tech.(Natural Science Edition).2016, 44(10):31-35.
[18] 赵丽洁,杜永峰,李万润,张浩.基于小波多分辨率分析的时变结构参数识别研究[J].工程力学,2016.9(33):94-102
ZHAO Li-jie,DU Yong-feng, LI Wang-run,et al.Physical parameter identification of time-varying structure based on wavelet multiresolution analysis[J]. Engineering mechanics, 2016.9(33):94-102.
[19] C.G. Koh, B. Hong, C. Y. Liaw. Substructural and progressive structural identification methods. Engineering Structures, 2003(25):1551-156
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}