基于阻尼特性鲁棒性的车身NVH性能设计

郝耀东1.2.3, 潘能贵1,何智成1,顾成波4

振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 139-145.

PDF(1818 KB)
PDF(1818 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 139-145.
论文

基于阻尼特性鲁棒性的车身NVH性能设计

  • 郝耀东1.2.3, 潘能贵1,何智成1,顾成波4
作者信息 +

Auto-body NVH performance design based on damping characteristics robustness#br#

  • HAO Yaodong 1.2.3, PAN Nenggui1, HE Zhicheng1, GU Chengbo4
Author information +
文章历史 +

摘要

阻尼片作为控制车辆振动噪声的主要手段之一,其损耗因子和制造厚度的鲁棒性是造成车辆NVH性能波动的主要因素之一。本文主要对阻尼片进行研究以控制车辆NVH性能的波动,首先,建立阻尼片材料的四因子模型,采用麦夸特法对模型参数进行求解以获取损耗因子的不确定分布特性;采用模态应变能方法确定铺设阻尼片的位置;以阻尼片厚度为设计变量,以材料损耗因子为随机变量,运用组合优化方法遗传算法(GA)和序列二次规划法(SQP)组合进行鲁棒性优化设计,在保证车内声压级水平的条件下降低车辆噪声的波动性。以某MPV车型为算例进行优化设计,优化后单目标函数(SOF)均值为0.465,标准方差为0.0047,可靠性达到99.8%,比初始设计值提高了近1倍。

Abstract

Damping sheet is one of main means to control vibration and noise of vehicles, the robustness of its loss factor and manufacturing thickness is one of main factors causing vehicles’ NVH performance fluctuation.Here, the damping sheet was studied to control vehicles’ NVH performance fluctuation.Firstly, a four-factor model for damping material was built, Marquardt method was used to solve the model’s parameters and obtain damping material loss factor’s uncertain distribution characteristics.Then, the modal strain energy method was adopted to determine laying location of damping sheet.Finally, taking thickness of damping sheet as the design variable and loss factor as the random variable, the combined optimization method of the genetic algorithm (GA) and the sequential quadratic programming (SQP) one was applied to do the robustness optimization design and reduce the fluctuation of vehicle interior noise under the condition of ensuring the sound pressure level inside vehicle.Taking a MPV model as an example, the optimization design was performed.The results showed that the mean value of the single objective function (SOF) is 0.465 and its standard deviation is 0.004 7; the reliability reaches 99.8%, it’s almost double the initial design value.

关键词

阻尼片 / 四因子模 / 麦夸特算法 / 制造稳健性 / 车内噪声

Key words

Damping sheet / Four factor model / Marquardt algorithm / Manufacturing robustness / Interior noise

引用本文

导出引用
郝耀东1.2.3, 潘能贵1,何智成1,顾成波4. 基于阻尼特性鲁棒性的车身NVH性能设计[J]. 振动与冲击, 2018, 37(19): 139-145
HAO Yaodong 1.2.3, PAN Nenggui1, HE Zhicheng1, GU Chengbo4. Auto-body NVH performance design based on damping characteristics robustness#br#[J]. Journal of Vibration and Shock, 2018, 37(19): 139-145

参考文献

[1] Subramanian S, Surampudi R, Thomson K R, et al. Optimization of damping treatment for structure borne noise reduction [R]. SAE Technical Paper, 2003.
[2] 郑玲, 谢熔炉, 王宜, 等. 基于优化准则的约束阻尼材料优化配置[J]. 振动与冲击, 2010, 29(11):156-159.
ZHENG Ling, XIE Ronglu, WANG Yi, et al. Optimal placement of constrained damping material in structures based on optimality criteria [J]. Journal of vibration and shock, 2010, 29(11):156-159.
[3] 张志飞, 倪新帅, 徐中明,等. 基于优化准则法的自由阻尼材料拓扑优化[J]. 振动与冲击, 2013, 32(14):98-102.
ZHENG Zhifei, NI Xinshuai, Xu Zhongming, et al. Topologic optimization of a free damping material based on optimal criteria method [J]. Journal of vibration and shock, 2013, 32(14):98-102.
[4] 房占鹏, 郑玲. 约束阻尼结构的双向渐进拓扑优化[J]. 振动与冲击, 2014, 33(8):165-170.
FANG Zhanpeng ZHENG Ling. Topological optimization for constrained layer damping material in structures using BESO method [J]. 2014, 33(8):165-170.
[5] Lee D H. Optimal placement of constrained-layer damping for reduction of interior noise [J]. AIAA journal, 2008, 46(1): 75-83.
[6] Baz A, Ro J. Optimum design and control of active constrained layer damping [J]. Journal of Mechanical Design, 1995, 117(B): 135-144.
[7] 刘天雄, 石银明, 华宏星,等. 主动约束层阻尼振动控制技术现状及展望[J]. 振动与冲击, 2001, 20(2):1-6.
LIU Tianxiong, SHI Yinming, HUA Hongxing, et al. A Survey on Vibration Damping and Control Using Active Constrained Layer Damping [J]. Journal of vibration and shock, 2001, 20(2):1-6.
[8] Nashif A D, Jones D I G, Henderson J P. Vibration damping [M]. John Wiley & Sons, 1985.
[9] Danti M, Vige D, Nierop G V. A tool for the simulation and optimization of the damping material treatment of a car body [R]. SAE Technical Paper, 2005.
[10] Arikoglu A. A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms [J]. Rheologica Acta, 2014, 53(3): 219-233.
[11] Jung B C, Lee D, Youn B D, et al. A statistical characterization method for damping material properties and its application to structural-acoustic system design [J]. Journal of mechanical science and technology, 2011, 25(8): 1893-1904.
[12] Marburg S. Developments in structural-acoustic optimization for passive noise control [J]. Archives of computational methods in engineering, 2002, 9(4): 291-370.
[13] Khuri A I, Cornell J A. Response surfaces: designs and analyses [M]. CRC press, 1996.
[14] 朱唤珍, 李夕兵, 宫凤强. 基于响应面法的三维HB强度准则可靠度的研究[J]. 中南大学学报(自然科学版), 2017, 48(2):491-497.
ZHU Huanzhen, LI Xibing, GONG Fengqiang. Reliability analysis of 3d HB strength criterion based on the response surface method [J]. Journal of Central South University(Science and Technology) , 2017, 48(2):491-497.
[15] 赖宇阳, 袁新. 基于遗传算法和逐次序列二次规划的叶栅基迭优化[J].工程热物理学报, 2003, 24(1): 52-54.
LAI Yuyang, YUAN Xin. BLADE Stacking optimization based on GA and SQP methods [J]. Journal of engineering thermal physics, 2003, 24(1): 52-54.

PDF(1818 KB)

Accesses

Citation

Detail

段落导航
相关文章

/