柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究

陈志勇,李振汉,张婷婷

振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 174-182.

PDF(1106 KB)
PDF(1106 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 174-182.
论文

柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究

  • 陈志勇,李振汉,张婷婷
作者信息 +

Improved fuzzy-immune hybrid control and vibration suppression for flexible-base, flexible-joint space robots based on state observation#br#

  • CHEN Zhiyong, LI Zhenhan, ZHANG Tingting
Author information +
文章历史 +

摘要

研究了在有界外部扰动、基座姿态控制输入比例不确定影响下,柔性基、柔性铰空间机器人系统的刚性轨迹跟踪控制及柔性振动抑制问题。结合系统动量守恒原理、拉格朗日法并应用柔性补偿与奇异摄动技术,建立了柔性基、柔性铰空间机器人的奇异摄动动力学方程。为消除系统外部扰动、不确定控制输入比例对空间机器人轨迹跟踪精度的影响,在传统免疫控制算法基础上引入线性速度观测器及模糊控制器,提出一种基座姿态与机械臂各关节协调运动且不依赖于被控慢变子系统模型的改进模糊免疫混合控制律。为主动抑制基座、关节所产生的双重柔性振动,针对快变子系统提出一种基于线性状态观测器的最优控制律。综合上述两个控制律,得到了一种改进模糊免疫混合控制及抑振方案。所提控制方案无需在实时控制过程中对空间机器人的相关速度信号进行测量与反馈,并对系统不确定性保持有很强的鲁棒性。仿真实验结果证实了方案在系统刚、柔性运动控制上的有效性。

Abstract

The rigid trajectory tracking control and flexible vibration suppression for flexible-base, flexible-joint space robot systems were studied under effects of bounded external disturbances and uncertain pedestal attitude control input proportion.Combined with the system momentum conservation principle and Lagrange method, the flexible compensation and the singular perturbation technique were adopted to establish the singular perturbation dynamic equations of a flexible-base, flexible-joint space robot system.To eliminate influences of external disturbances and uncertain control input proportion on the trajectory tracking precision of a space robot system, a linear velocity observer and a fuzzy controller were introduced based on the traditional immune control algorithm to propose an improved fuzzy- immune hybrid control law, it was independent on controlled slow-varying subsystem models and realized coordinated motion between pedestal attitude and joints of manipulator.To actively suppress double flexible vibrations of pedestal and joints, an optimal control law based on a linear state observer was proposed for fast-varying subsystems.The improved fuzzy-immune hybrid control and vibration suppression scheme was obtained by combining the above two control laws.The proposed control scheme didn’t need measurement and feedback of related velocity signals of the space robot system in process of real time control and kept strong robustness to the system uncertainties.Simulation results verified the effectiveness of the scheme in control of the system’s rigid and flexible motions.

关键词

空间机器人 / 状态观测 / 模糊免疫混合控制 / 振动抑制 / 最优控制

Key words

space robot / state observations / fuzzy immune hybrid control / vibration suppression / optimal control

引用本文

导出引用
陈志勇,李振汉,张婷婷. 柔性基、柔性铰空间机器人基于状态观测的改进模糊免疫混合控制及抑振研究[J]. 振动与冲击, 2018, 37(19): 174-182
CHEN Zhiyong, LI Zhenhan, ZHANG Tingting. Improved fuzzy-immune hybrid control and vibration suppression for flexible-base, flexible-joint space robots based on state observation#br#[J]. Journal of Vibration and Shock, 2018, 37(19): 174-182

参考文献

[1] Uyama N, Narumi T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite [J]. IFAC-PapersOnLine, 2016, 49(17): 230-235.
[2] James F, Shah S V, Singh A K, et al. Reactionless maneuvering of a space robot in precapture phase [J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2417- 2423.
[3] Fluckiger L, Utz H. Service oriented robotic architecture for space robotics: design, testing, and lessons learned [J]. Journal of Field Robotics, 2014, 31(1): 176-191.
[4] Nabavi C S Y, Malaek S M B. Fast estimation of space-robots inertia parameters: a modular mathematical formulation [J]. Acta Astronautica, 2016, 127: 283-295.
[5] Holcomb L B, Montemerlo M D. NASA automation and robotics technology program [J]. IEEE Aerospace and Electronic System Magazine, 2009, 2(4): 19-26.
[6] 丁希伦, 战强, 解玉文. 自由漂浮的空间机器人系统的动力学奇异特性分析及其运动规划[J]. 航空学报, 2001, 22(5): 474-477.
DING Xi-Lun, ZHAN Qiang, XIE Yu-wen. Dynamic singularity analysis and motion planning of free-floating space robot system [J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(5): 474-477.
[7] 戈新生, 陈立群, 吕杰. 空间机械臂非完整运动规划的遗传算法研究[J]. 宇航学报, 2005, 25(3): 262-266.
GE Xin-sheng, CHEN Li-qun, LV Jie. Nonholonomic motion planning of a space manipulator system using genetic algorithm [J]. Journal of Astronautics, 2005, 25(3): 262-266.
[8] Kumar A, Pathak P M, Sukavanam N. Trajectory control of a two DOF rigid-flexible space robot by a virtual space vehicle [J]. Robotics and Autonomous Systems, 2013, 61(5): 473-482.
[9] Sabatini M, Gasbarri P, Monti R, et al. Vibration control of a flexible space manipulator during on orbit operations [J]. Acta Astronautica, 2012, 73: 109-121.
[10] 王从庆, 张承龙. 自由浮动柔性双臂空间机器人系统的动力学控制[J]. 机械工程学报, 2007, 43(10): 196-200.
WANG Cong-qing, ZHANG Cheng-long. Dynamic control of a free-floating flexible dual-arm space robot system [J]. Chinese Journal of Mechanical Engineering, 2007, 43(10): 196-200.
[11] Ulrich S, Sasiadek J Z. Trajectory tracking control of flexible-joint space manipulators [J]. Canadian Aeronautics and Space Journal, 2012, 58(1): 47-59.
[12] 陈志勇, 陈力. 柔性关节空间双臂机器人奇异摄动增广鲁棒自适应PD复合控制[J]. 振动与冲击, 2015, 34(16): 79-84.
CHEN Zhi-yong, CHEN Li. Singular perturbation augmented robust adaptive PD composite control for flexible-joint dual-arm space robot [J]. Journal of Vibration and Shock, 2015, 34(16): 79-84.
[13] Xu W F, Meng D, Chen Y Q, et al. Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft [J]. Multibody System Dynamics, 2014, 32(3): 357-401.
[14] 梁捷, 陈力, 梁武林, 等. 基座弹性影响下空间站柔性关节机械臂的鲁棒自适应滑模控制及双重弹性振动主动抑制[J]. 载人航天, 2016, 22(6): 788-796.
LIANG Jie, CHEN Li, LIANG Wu-lin, et al. Robust adaptive sliding mode control and active dual vibration suppression in flexible joint manipulator of space station with elastic foundation [J]. Manned Spaceflight, 2016, 22(6): 788-796.
[15] Ulrich S, Sasiadek J Z, Barkana I. Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties [J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6): 1961-1975.
[16] Sun F C, Zhang H, Wu H. Neuro-fuzzy hybrid position/force control for a space robot with flexible dual-arms [J]. Lecture Notes in Computer Science, 2004, 3174: 13-18.
[17] 谢立敏, 陈力. 漂浮基柔性空间机器人的鲁棒控制及振动抑制[J]. 力学学报, 2012, 44(6): 1057-1065.
XIE Li-min, CHEN Li. Robust control and vibration suppression of free-floating flexible space robot [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1057-1065.
[18] 漆安慎, 杜禅英. 免疫的非线性模型[M]. 上海: 上海科技教育出版社, 1998: 1-5.
QI An-shen, DU Chan-ying. Nonlinear models in immunity [M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 1998: 1-5.
[19] 唐旭东, 庞永杰, 李晔. 水下机器人的运动免疫控制方法[J]. 电机与控制学报, 2007, 11(6): 676-680.
TANG Xu-dong, PANG Yong-Jie, LI Ye. Immune control algorithm of autonomous underwater vehicle control [J]. Electric Machines and Control, 2007, 11(6): 676-680.
[20] Spong M W. Modeling and control of elastic joint robots [J]. Journal of Dynamic Systems, Measurement and Control, 1987, 109(4): 310-319.
[21] 刘业超, 金明河, 刘宏. 柔性关节机器人基于柔性补偿的奇异摄动控制[J]. 机器人, 2008, 30(5): 460-466.
LIU Ye-chao, JIN Ming-he, LIU Hong. Singular perturbation con-trol for flexible-joint manipulator based on flexibility compensation [J]. Robot, 2008, 30(5): 460-466.
[22] Yu X Y, Chen L. Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators [J]. Acta Astronautics, 2015, 108: 146-155.

PDF(1106 KB)

Accesses

Citation

Detail

段落导航
相关文章

/