基于WLS-SVM的加速度计动态模型参数辩识

王建林1,郭永奇1,魏青轩1,孙桥2,胡红波2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 239-244.

PDF(1009 KB)
PDF(1009 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 239-244.
论文

基于WLS-SVM的加速度计动态模型参数辩识

  • 王建林1,郭永奇1,魏青轩1,孙桥2,胡红波2
作者信息 +

Accelerometer dynamic model parametric identification using WLS-SVM

  • WANG Jianlin1, GUO Yongqi1, WEI Qingxuan1, SUN Qiao2, HU Hongbo2
Author information +
文章历史 +

摘要

提高加速度计动态模型参数辨识精度,对研究和改善加速度计动态特性有重要作用。针对加速度计的非线性影响其动态模型参数辨识精度的问题,提出了一种基于加权最小二乘(WLS)和支持向量机(SVM)的加速度计动态模型参数辩识方法,该方法针对包含线性部分和非线性项的加速度计二阶非线性动态模型,利用WLS辩识加速度计动态模型的线性部分参数,并采用SVM估计加速度计动态模型的非线性特性,通过迭代和最小化所构建的误差准则函数,实现加速度计动态模型参数最优辨识。仿真实验和加速度计绝对法冲击激励校准实验表明,该方法能够减小加速度计非线性对动态模型参数辩识精度的影响,所得加速度计动态模型参数辨识结果具有较高的精度。

Abstract

It is important to improve parametric recognition accuracy of accelerometer dynamic model for studying and improving accelerometer dynamic characteristics.Aiming at the problem of nonlinearity of accelerometer affecting its dynamic model parametric identification accuracy, an accelerometer dynamic model parametric identification method using the weighted least squares (WLS) and the support vector machine (SVM) was proposed.Aiming at the second order nonlinear dynamic model of accelerometer containing a linear part and nonlinear terms, parameters of the linear part of the model were identified using WLS, and the nonlinear characteristics of the model were estimated using SVM.Then the constructed error criterion function was iterated and minimized to realize the optimal identification for accelerometer dynamic model parameters.The simulation tests and the accelerometer calibration tests under shock excitation based on the absolute method showed that the proposed method can be used to reduce influences of nonlinearity of accelerometer on its dynamic model parametric identification accuracy; the identified results for accelerometer dynamic model parameters have a higher accuracy.

关键词

加速度计 / 非线性动态模型 / 支持向量机 / 加权最小二乘 / 参数辩识

Key words

accelerometer / nonlinear dynamic model / support vector machine / weighted least squares / parameter identification

引用本文

导出引用
王建林1,郭永奇1,魏青轩1,孙桥2,胡红波2. 基于WLS-SVM的加速度计动态模型参数辩识[J]. 振动与冲击, 2018, 37(19): 239-244
WANG Jianlin1, GUO Yongqi1, WEI Qingxuan1, SUN Qiao2, HU Hongbo2. Accelerometer dynamic model parametric identification using WLS-SVM[J]. Journal of Vibration and Shock, 2018, 37(19): 239-244

参考文献

[1]  于梅. 0.1 Hz~50 kHz直线振动幅值和相位国家计量基准系统的研究[J]. 振动与冲击, 2007, 26(7):54-58.
 Mei Y U. Recent development of study on primary standards for measuring magnitude and phase of translational vibration in frequency domain [J]. Journal of Vibration & Shock, 2007, 26(7):54-58.
[2] 于梅, 胡红波, 左爱斌,等. 新一代冲击加速度国家基准装置的研究与建立[J]. 振动与冲击, 2013, 32(10):124-129.
 Mei Y U, Hong-Bo H U, Zuo A B, et al. Establishment of new generation national primary standard device for shock acceleration calibration[J]. Journal of Vibration & Shock, 2013, 32(10):124-129.
[3] 孙桥, 王建林, 胡红波,等. 低g值碰撞式冲击加速度计量标准装置研究与建立[J]. 振动与冲击, 2015, 34(10):179-183.
 Sun Q, Wang J L, Hu H B, et al. Development of a low-g shock standard device based on rigid body collision for shock acceleration calibration[J]. Journal of Vibration & Shock, 2015, 34(10):179-183.
[4] ISO 16063-13: 2001, International Standard 16063-13 Methods for the calibration of vibration and shock transducers Part 13: Primary Shock calibration using laser interferometry [S].
[5]  俞阿龙. 基于遗传神经网络的加速度传感器动态建模方法[J]. 仪器仪表学报, 2006, 27(3):315-318.
 Yu A. Dynamic modeling method based on genetic neural network for accelerometer[J]. Chinese Journal of Scientific Instrument, 2006, 27(3):315-318.
[6]  杨子凯, 王建林, 于涛, 等. 基于预测误差法的加速度传感器动态模型参数辨识[J]. 仪器仪表学报, 2015, 36(6): 1244-1249.
 Yang Z, Wang J, Yu T, et al. Dynamic model parameter identification of the acceleration sensor based on the prediction error method[J]. Chinese Journal of Scientific Instrument, 2015, 36(6):1244-1249.
[7] Link A, Täubner A, Wabinski W, et al. Modelling accelerometers for transient signals using calibration measurements upon sinusoidal excitation[J]. Measurement, 2007, 40(9–10):928-935.
[8] Link A, Wabinski W, Bruns T, et al. Calibration of accelerometers: determination of amplitude and phase response upon shock excitation [J]. Measurement Science and Technology, 2006, 17(7): 1888.
[9] 胡红波, 孙桥. 基于绝对法冲击校准的加速度计参数辨识研究[J]. 测试技术学报, 2013, 27(1): 19-24.
 Hongbo H U, Sun Q. Parameter Identification of Accelerometer Based on Primary Shock Calibration Method[J]. Journal of Test & Measurement Technology, 2013, 27(1): 19-24.
[10] He J, Xie J, He X, et al. Calculating capacitance and analyzing nonlinearity of micro-accelerometers by Schwarz–Christoffel mapping [J]. Microsystem Technologies, 2014, 20(6): 1195-1203.
[11] Li D, Gao X, Zhou F, et al. Research on nonlinearity property of piezoelectric vibration accelerometer based on cymbal transducer [C]//Information and Automation (ICIA), 2010 IEEE International Conference on. IEEE, 2010: 930-934.
[12] Li N, Chen J, Yuan Y, et al. Compensation of FOG temperature drift based on LS-SVM modeling[C]// Chinese Control Conference. 2016:5515-5518.
[13] Mao J, Cao Y, Yang J, et al. Implementation uncertainty evaluation of cylindricity errors based on geometrical product specification (GPS)[J]. Measurement, 2009, 42(5):742-747.
[14] 张洁文. 冲击加速度标准装置不确定度评定[J]. 计量技术, 2003 (4): 50-52.
 Zhang Jie-wen. Uncertainty evaluation of impact acceleration standard devices[J]. Measurement Technique, 2003(4): 50-52.
[15] 于梅. 低频振动传感器幅值和相移测量的不确定度[J]. 振动与冲击, 2009, 28(4):106-109.
 Yu M. Measurement uncertainty of magnitude and phase shift for sensitivity of a low frequency vibration transducer with amplifier[J]. Journal of Vibration & Shock, 2009, 28(4):106-109.
[16] Zettel V, Hitzmann B. Optimization of the production parameters for bread rolls with the Nelder–Mead simplex method[J]. Food & Bioproducts Processing, 2017, 103:10-17.

PDF(1009 KB)

Accesses

Citation

Detail

段落导航
相关文章

/