滚动轴承故障程度量化评估是实现其有效剩余寿命预测和状态维修的基础,目前广泛研究的基于距离和概率相似度量的故障定量评估方法存在计算复杂且易于过早饱和等缺点,不利于在线监测应用。常规时域统计指标如均方根值(Root mean square , Rms)因具有计算简单且与故障发展趋势一致性较好等优点,在工程实际中得到广泛应用,但Rms对早期故障不够敏感。针对上述不足,本文提出了一种新的故障量化评估指标——自适应频带冲击强度(Shock value of selected frequency band, SVsb)。首先利用提出的包络谱谱峰因子(Crest of envelope spectrum, Ec)对复平移Morlet小波滤波器的中心频率和带宽参数进行优化选择,得到自适应最优滤波器并对分析信号进行滤波;再将滤波信号的Rms值与Ec值的乘积作为故障程度评估指标。该指标包含的Rms和Ec分别反映了滤波频带内信号的总强度和冲击分量所占比例,因此能有效反映滚动轴承循环冲击故障特征的强弱,从而量化评估冲击类故障程度。人工植入故障实验数据和滚动轴承疲劳试验数据分析表明本文方法能够有效跟踪轴承故障发展趋势并对早期故障敏感。
Abstract
Fault quantitative evaluation of rolling bearings is a basis to realize their effective residual life prediction and condition-based maintenance.The present fault quantitative evaluation method based on distance and probabilistic similarity measure has disadvantages of complicated calculation and easy premature saturation, and is unfavorable to on-line monitoring application.In traditional time domain, the statistical index of root mean square (RMS) has advantages of simple to calculate and good consistency with fault development trend, and it is widely used in engineering practice.Unfortunately, RMS is insensitive to incipient faults.Here, a new fault quantitative evaluation index named shock value of selected frequency band (SVSB) was proposed.Firstly, the crest of envelope spectrum (EC) was used to optimally select the central frequency and band width parameters of Morlet wavelet filter to obtain the adaptive optimal filter and do filtering for the analyzed signals.SVSB was defined as the product of RMS and EC of the filtered signals, RMS and EC represented the signal’s total intensity within the filtered frequency band and the ratio of fault induced impact components to the former, respectively.Thus, SVSB revealed effectively the strength of cyclic impact fault in rolling bearings to quantitatively evaluate their impact fault level.The test data for artificially introduced faults and rolling bearings’ fatigue test data showed that SVSB can trace rolling bearings’ fault development trend; it is sensitive to incipient faults.
关键词
故障定量诊断 /
滚动轴承 /
小波滤波 /
共振解调
{{custom_keyword}} /
Key words
Fault severity assessment /
rolling bearings /
wavelet filter /
resonance demodulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘尚坤,唐贵基,何玉灵. Teager能量算子结合MCKD的滚动轴承早期故障识别[J]. 振动与冲击. 2016, 35(15): 98-102.
LIU Shang-kun, TANG Gui-ji, HE Yu-ling. Incipient fault diagnosis of rolling bearings based on Teager energy operator and MCKD[J]. Journal of Vibration and Shock. 2016, 35(15): 98-102.
[2] 马新娜,杨绍普. 典型快速谱峭图算法的研究及应用[J]. 振动与冲击. 2016, 35(15): 109-114.
MA Xin-na, YANG Shao-pu. Typical fast kurtogram algorithm and its application[J]. Journal of Vibration and Shock. 2016, 35(15): 109-114.
[3] Ben Ali J, Chebel-Morello B, Saidi L, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network[J]. Mechanical Systems and Signal Processing. 2015, 56-57: 150-172.
[4] 雷亚国,陈吴,李乃鹏,等. 自适应多核组合相关向量机预测方法及其在机械设备剩余寿命预测中的应用[J]. 机械工程学报. 2016, 52(1): 97-93.
LEI Ya-guo, CHEN Wu, LI Nai-peng, et al. A relevance vector machine prediction method based on adaptive multi-kernel combination and Its application to remaining useful life prediction of machinery[J]. Journal of Mechanical Engineering. 2016, 52(1): 97-93.
[5] 张小丽,陈雪峰,李兵,等. 机械重大装备寿命预测综述[J]. 机械工程学报. 2011, 47(11): 100-116.
ZHANG Xiao-li, CHEN Xue-feng, LI Bing, et al. Review of life rrediction for mechanical major equipments[J]. Journal of Mechanical Engineering. 2011, 47(11): 100-116.
[6] Caesarendra W, Widodo A, Yang B. Application of relevance vector machine and logistic regression for machine degradation assessment[J]. Mechanical Systems and Signal Processing. 2010, 24(4): 1161-1171.
[7] Honarvar F, Martin H R. New statistical moments for diagnostics of rolling element bearings[J]. Journal of Manufacturing Science and Engineering. 1997, 119: 425-432.
[8] Martin H R, Honarvar F. Application of statistical moments to bearing failure detection[J]. Applied Acoustics. 1995, 44: 67-77.
[9] Wang W. A model to predict the residual life of rolling element bearings given monitored condition information to date[J]. IMA Journal of Management Mathematics. 2002, 13(1): 3-16.
[10] Li Y, Zhang C, Kurfess T, et al. Diagnostics and prognostics of a single surface defect on roller bearings[J]. Proc. IMechE, Part C: Journal of Mechanical Engineering Science. 2000, 214(9): 1173-1185.
[11] 李力,唐茗. 滚动轴承故障程度诊断方法研究[J]. 轴承. 2009(04): 42-46.
LI Li, TANG Ming. Research on fault severity evaluation method for rolling bearings[J]. Bearing. 2009(04): 42-46.
[12] 王红军,张建民,徐小力. 基于支持向量机的机械系统状态组合预测模型研究[J]. 振动工程学报. 2006, 19(02): 242-245.
WANG Hong-jun, ZHANG Jian-min, XU Xiao-li. Study on combination trend prediction technology for mechaninery system based on SVM[J]. Journal of Vibration Engineering. 2006, 19(02): 242-245.
[13] Pan Y, Chen J, Guo L. Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description[J]. Mechanical Systems and Signal Processing. 2009, 23(3): 669-681.
[14] Yu J. Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models[J]. Mechanical Systems and Signal Processing. 2011, 25(7): 2573-2588.
[15] Ocak H, Loparo K A, Discenzo F M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics[J]. Journal of Sound and Vibration. 2007, 302(4–5): 951-961.
[16] 徐小力,殷健. 旋转机械趋势预测方法的研究[J]. 北京机械工业学院学报. 1999, 14(01): 1-5.
XU Xiao-li, YIN Jian. The method of the prediction of the rotating machine[J]. Journal of Beijing Institute of Machinery. 1999, 14(01): 1-5.
[17] Li Y, Billington S, Zhang C, et al. Adaptive prognostics for rolling element bearing condition[J]. Mechanical Systems and Signal Processing. 1999, 14(5): 747-762.
[18] Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings[J]. Mechanical Systems and Signal Processing. 2001, 15(2): 287-302.
[19] 张龙,熊国良,黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报. 2015, 51(3): 129-138.
ZHANG Long, XIONG Guo-liang, HUANG Wen-yi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering. 2015, 51(3): 129-138.
[20] 张利群,朱利民,钟秉林. 几个机械状态监测特征量的特性研究[J]. 振动与冲击. 2001,20(01):20-21.
ZHANG Li-qun, ZHU Li-min, ZHONG Bing-lin. Study on the features of some specific parameters utilized for machine condition monitoring[J]. Journal of Vibration and Shock. 2001,20(01):20-21.
[21] Mcfadden P D, Smith J D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique-a review[J]. Tribology International. 1984, 17(1): 3-10.
[22] Lee J, Qiu H, Yu G, et al. 'Bearing Data Set', IMS, University of Cincinnati. NASA Ames Prognostics Data Repository[Z]. 2007.
[23] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration. 2006, 289(1): 1066-1090.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}