低频声波的控制长期以来是一个具有挑战性的课题,当前热点研究的膜类声学超材料能够解决低频的问题,然而吸声共振频率的降低是以牺牲共振带宽为代价的,即要达到低频吸声的需求只能降低吸声带宽。以吸收型膜类声学超材料为研究对象,研究共振质量块的非对称性对结构低频、宽频吸声性能的影响,并得出了以下结论:在非对称模式下,结构整体的吸声性能得到了极大的提高,吸声带宽从原来的窄频扩大为宽频;等效质量密度经过零点的频率都对应于吸声系数的峰值,在非对称模式的影响下,结构的整体弹性应变能在全频段内高于对称模式的应变能;因结构非对称性引起的各阶吸声峰值频率受共振块的质量调节,并呈现一定的规律,依据该规律最终设计了一种吸声结构,并通过数值计算达到了低频宽带的吸声效果。此研究对改善膜类声学超材料的低频宽带吸声性能有着重要的指导意义。
Abstract
Low frequency sound wave control is a challenging subject, and membrane-type acoustic metamaterials for current hot research can deal with it.However, the sound-absorbing resonant frequency’s dropping is at the expense of resonant bandwidth.Here, the sound-absorbing membrane-type acoustic metamaterials were taken as the study object to study the effects of a resonance mass’s asymmetry on structure’s low frequency wide band sound-absorbing performance.The results showed that the sound absorption performance of a whole structure significantly increases under structural asymmetric mode, and the sound absorption bandwidth is widened; the frequencies for zero equivalent mass density are corresponding to peak values of sound absorption coefficient; a structure with asymmetric modes has higher elastic strain energy than that with symmetry modes does within a full frequency range; each sound absorption peak frequency caused by structure’s asymmetry is adjusted by the mass of a resonant block and reveals a certain law; according to this law, a sound-absorbing structure is designed to achieve the sound absorption effect with low frequency and wide band through numerical calculation.This study provided a theoretical guide for improving low frequency wide band sound-absorbing performance of membrane-type acoustic metamaterials.
关键词
低频 /
宽带 /
非对称 /
声学超材料
{{custom_keyword}} /
Key words
low frequency /
wide band /
asymmetry /
acoustic metamaterials
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] LIU Zheng-you, ZHANG Xi-xiang, MAO Yi-wei,et al. Locally resonant sonic materials[J].science,2000,289(5485): 1734-1736.
[2] 梅军, 杨旻, 杨志宇, 等.薄膜型负质量密度声学超常介质[J].物理, 2010, 39(04):234-247.
MEI Jun, YANG Min, YANG Zhi-yu, et al.Membrane-type acoustic metamaterial withnegative dynamic mass [J].Physical,2010, 39(04):234-247.
[3] Z.Yang, MEI Jun, YANG Min, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical review letters, 2008, 101(20): 204301.
[4] Naify C J, Chang C M, McKnight G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics, 2010, 108(11): 114905.
[5] Yang Z, Dai H M, Chan N H, et al. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
[6] 梅军,马冠聪,杨旻,等. 2012 物理 41(07) 425-433
MEI Jun, YANG Guan-cong, YANG Min, et al.
[7] CHEN Yang-yang, HUANG Guo-liang, ZHOU Xiao-ming, et al. Analytical coupled vibroacoustic modeling of membrane-type acoustic metamaterials: Plate model[J]. The Journal of the Acoustical Society of America, 2014, 136(6): 2926-2934.
[8] 吴九汇,张思文,沈礼. 螺旋局域共振单元声子晶体板结构的低频振动带隙特性研究[J].机械工程学报, 2013, 39(2): 62-69.
WU Jiu-hui, ZHANG Si-wen, CHEN Li.Low-frequency Vibration Characteristics of Periodic Spiral Resonators in
Phononic Crystal Plates[J].
2013, 39(2): 62-69.
[9] Siwen Zhang,Jiu Hui Wu,Zhiping Hu Low-frequency locally resonant band-gaps in phononic crystal plates with periodic spiral resonators[J]. Journal of Applied Physics, 2013, 113(16): 163511.
[10] 刘红星, 吴九汇, 沈礼,等.声子晶体结构低频降噪机理研究及应用[J].南京大学学报:自然科学版, 2013, 49(4):530-537.
LIU Hong-xing, WU Jiu-hui, SHEN Li, et al.Low-frequency noise reduction based on quasi-bandgap of phonoic crystal structures[J].Journal of Nanjing University: Natural Sciences, 2013, 49(4):530-537.
[11] 徐芝纶. 弹性力学简明教程[M].高等教育出版社,2013.
XU Zhi-lun.Simple teaching of elasticity[M].Higher Education Press,2013
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}