基于统计能量分析原理的声振耦合模型全局灵敏度分析

蔡延年 1,于洪亮 1,2,闫锦 2,廖建彬 2,俞万能 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 50-55.

PDF(985 KB)
PDF(985 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 50-55.
论文

基于统计能量分析原理的声振耦合模型全局灵敏度分析

  • 蔡延年 1 ,于洪亮 1,2 ,闫锦 2 ,廖建彬 2 ,俞万能 2
作者信息 +

Global sensitivity analysis for a vibro-acoustic coupled model based on SEA

  • CAI Yannian1, YU Hongliang1,2, YAN Jin2,LIAO Jianbin2,YU Wanneng2
Author information +
文章历史 +

摘要

为探究统计能量参数不确定性对声振响应结果不确定性的影响规律,采用傅里叶幅值灵敏度检验法对三子系统统计能量声振模型进行参数灵敏度分析。研究结果表明:共振耦合损耗因子宽频带内的主要影响参数;非共振耦合损耗因子仅在低频段存在一定影响力;吻合效应改变临界频率下各参数对输出函数不确定性的影响程度。该方法及结论可用于鉴别声振响应结果不确定性的来源和不同参数的贡献情况,为基于统计能量分析原理的减振降噪设计提供参考。

Abstract

In order to study influence laws of statistical energy parameter uncertainties on uncertainty of vibro-acoustic responses, Fourier amplitude sensitivity test (FAST) was applied to perform the parametric sensitivity analysis for a statistical energy vibro-acoustic model with three subsystems.It was shown that the most important parameter is the resonance coupling loss factor within a wide frequency band; the non-resonance coupling loss factor has a certain influence within a low frequency band; the coincidence effect changes the influence level of each parameter on the uncertainty of the output function under the critical frequency.The proposed method and conclusions could be used to identify the source of vibro-acoustic response uncertainty and contributions of different parameters.They provided a reference for designs of vibration and noise reduction based on SEA.

关键词

统计能量分析 / 全局灵敏度分析 / 傅里叶幅值灵敏度检验法 / 不确定性

Key words

statistical energy analysis / global sensitivity analysis / Fourier Amplitude Sensitivity Test / uncertainty

引用本文

导出引用
蔡延年 1,于洪亮 1,2,闫锦 2,廖建彬 2,俞万能 2. 基于统计能量分析原理的声振耦合模型全局灵敏度分析[J]. 振动与冲击, 2018, 37(19): 50-55
CAI Yannian1, YU Hongliang1,2, YAN Jin2,LIAO Jianbin2,YU Wanneng2. Global sensitivity analysis for a vibro-acoustic coupled model based on SEA[J]. Journal of Vibration and Shock, 2018, 37(19): 50-55

参考文献

[1] 王海英, 赵德有. 中厚粘弹性阻尼芯层夹层板间的耦合损耗因子研究[J]. 船舶力学, 2009, 13(6):978-989.
WANG Hai-ying, ZHAO De-you. Coupling loss factor analysis of two L-shaped sandwich plates with thick viscoelastic core[J]. Journal of Ship Mechanics, 2009, 13(6):978-989.
[2] 欧阳山,鲁帆,伍先俊,等. 列车白车身损耗因子试验研究[J]. 振动与冲击, 2015, 34(5): 20-25.
OUYANG Shan, LU Fan, WU Xian-jun, et al. Experimental study of loss factors for train carriage body in white[J]. Journal of Vibration & Shock, 2015, 34(5): 20-25.
[3] 林永水, 吴卫国, 陈景昊,等. 钢铝结构连接耦合损耗因子计算方法研究[J]. 振动与冲击, 2015, 34(3): 204-209.
LIN Yong-Shui, WU Wei-Guo, CHEN Jing-Hao, et al. A new calculating method for coupling loss factor of a steel-aluminum junction[J]. Journal of Vibration & Shock, 2015, 34(3):204-209.
[4] Saltelli A, Ratto M. Global sensitivity analysis: the primer[M]. New Jersey:John Wiley & Sons, Inc, 2008.
[5] 宁玮, 张景绘, 王珺. 统计能量分析法中参数灵敏度分析[J]. 系统仿真学报, 2009, 21(17):5366-5370.
WANG Ning, ZHANG Jing- hui, WANG Jun. Sensitivity analysis of parameters in statistical energy analysis method[J]. Journal of System Simulation, 2009, 21(17):5366-5370.
[6] 刘小勇, 盛美萍, 行晓亮,等. 双层圆柱壳噪声预报及统计能量参数灵敏度分析[J]. 振动与冲击, 2007, 26(7):50-53.
LIU Xiao-yong, SHENG Mei-ping, XING Xiao-liang, et al. Prediction of noise radiation from a ring stiffened cylindrical double-shell and sensitivity analysis of SEA parameters[J]. Journal of Vibration & Shock, 2007, 26(7):50-53.
[7] 张国军, 闫云聚, 李鹏博. 用统计能量法分析飞行器声振响应影响因素[J]. 空军工程大学学报•自然科学版, 2013, 14(2):23-27.
ZHANG Guo-Jun, YAN Yun-Ju, LI Peng-Bo. Applications of statistical energy analysis in influencing factors analysis of aircraft vibro-acoustic response characteristics[J]. Journal of Air Force Engineering University, 2013, 14(2): 23-27.
[8] Lyon R H, DeJong R G. Theory and application of statistical energy analysis (Second Edition)[M]. Massachusetts: The MIT Press, 1995.
[9] Norton M P, Karczub D G. Fundamentals of noise and vibration analysis for engineers[M]. Cambridge: Cambridge university press, 2003.
[10] Xie G, Thompson D J, Jones C J C. Mode count and modal density of structural systems: relationships with boundary conditions[J]. Journal of Sound & Vibration, 2004, 274(3):621-651.
[11] Beranek L L, Ver I L. Noise and vibration control engineering-principles and applications [M]. New Jersey:John Wiley & Sons, Inc, 2006.
[12] 船舶及产品噪声控制与检测指南[S]. 北京:中国船级社. 2015.
[13] Wijker J J. Random vibrations in spacecraft structures design: theory and applications[M]. Berlin : Springer , 2009.
 [14] 姚德源, 王其政. 统计能量分析原理及其应用[M]. 北京:北京理工大学出版社. 1995.
[15] 钟祥璋. 建筑吸声材料与隔声材料[M]. 北京:化学工业出版社, 2012.
[16] Sobol’ I M. Sensitivity analysis for non-linear mathematical models[J]. Mathematical Modeling & Computational Experiment, 1993, 1: 407–411.
[17] Cukier R I, Fortuin C M, Shuler K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[J]. Journal of Chemical Physics, 1973, 59(8):3873-3878.
[18] Saltelli A, Tarantola S, Chan P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1):39-56.

PDF(985 KB)

Accesses

Citation

Detail

段落导航
相关文章

/