对于模拟液舱内流体运动,传统频域方法具有很大的局限性,其只能在线性条件下针对每个频率计算系统的响应,然后通过谱分析方法得到系统不规则激励的解,而不能直接通过加载不规则的激励得到不规则的响应,但是本文采用基于去奇异边界元的方法,可在时域内建立液舱内不规则流体晃荡问题的流体动力学数值模型,并利用FORTRAN开发了一套可以模拟任意尺度和形状的液舱晃荡程序。本文首先模拟了单向激励下液舱晃荡问题,并将数值解与解析解进行比较,验证了其准确性和精度。在此基础上,针对不规则波激励下液舱晃荡问题进行了模拟,结果表明文中方法可以有效模拟液舱晃荡问题。
Abstract
The traditional frequency domain method has large limitations to simulate liquid sloshing in a tank.It only can be used to calculate a system’s response of each frequency under linear condition.The system’s responses under irregular excitations can be obtained with the spectral analysis method.Here, a method called DBIEM (de-singularized boundary integral element method) was proposed.Based on DBIEM, a liquid dynamic numerical model was built to solve liquid sloshing problems in a tank.A calculation program was developed using FORTRAN to simulate liquid sloshing in tanks with arbitrary shape and size.Firstly, a liquid tank sloshing problem was simulated under a single direction excitation.Its result was compared with its analytic solution, and the correctness and accuracy of the proposed method were verified.Then, liquid tank sloshing problems were simulated under irregular excitations.The results showed that the proposed method can be used to effectively simulate liquid tank sloshing problems.
关键词
液舱晃荡 /
去奇异边界元 /
波面形态 /
不规则波
{{custom_keyword}} /
Key words
Sloshing /
DBIEM /
Free surface /
Random wave
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gao X. W. The radial integration method for evaluation of domain integrals with boundary-only discretization[J]. Engineering analysis with boundary elements, 2002, 26(10):905-916.
[2] 郑保敬. 功能梯度材料动态热力耦合分析的径向积分边界元法研究及其应用. 大连理工大学博士学位论文[D],2015.
[3] Cao Y,Schultz W. and Beck RF. Three dimensional desingularized boundary integral methods for potential problems. International Journal of Numerical methods in Fluids,1991, 12: 785-803.
[4] Jensen M., Karoly P. and Braver S.. The measurement of clinical pain intensity: A comparison of six methods. Pain,1986, 27:117-126.
[5] Lee T. H.. Nonlinear radiation problems for a surface piercing body[J]. Thesis, Report No.323, University of Michigan, Ann Arbor, MI.1992.
[6] 李宗翰,林言弥. 含入射波时任意三维浮体之全非线性流场模拟[J]. 水动力学研究与进展A辑,2003, 18(2): 156-162.
Li Zonghan, Lin Yanmi. Simulations of fully nonlinear flow with incident waves for arbitrary 3-D floating bodies[J]. JOURNAL OF HYDRODYNAMICS Ser. A. 2003, 18(2):156-162.
[7] Scorpio S. M., Beck RF.. A multipole accelerated desingularized method for computing nonlinear wave forces on bodies. Journal of Offshore[J]. Mechanics and Arctic Engineering, 1998,120:71-76.
[8] 王大国, 邹志利, 唐春安. 三维完全非线性波浪水槽的数值模拟[J]. 海洋学报,2006, 28(4):138-144.
Wang Daguo, Zhou Zhili, Tang Chunan. Fully nonlinear three-dimensional numerical wave tank simulation[J]. ACTA OCEANOLOGICA SINICA, 2006, 28(4):138-144.
[9] Kara, F., Tang, C.H. and Vassalors, D.. Time domain three-dimensional fully nonlinear computations of steady body-wave interaction problem[J]. Ocean Eng., 2007,34, 776-789.
[10] Zhang, X.S., Bandyk, P. and Beck, Robert F.. Seakeeping computations using double-body basis flows, Appl[J]. Ocean Res.,2010 ,32(4), 471-482.
[11] Gang Xu, A.M.S. Hamouda and B.C. Khoo. Numerical simulation of fully nonlinear sloshing waves in three-dimensional tank under random excitation[J].Ocean Systems Engineering , 2011,471-482.
[12] 戴遗山,段文洋. 船舶在波浪中运动的势流理论 [M]. 北京:国防工业出版社,2008.
Dai Yishan, Duan Wenyang. Potential Flow Theory of Ship Motion in Waves[M]. Beijing: National Defense Industry Press,2008.
[13] 徐刚. 不规则波中浮体二阶水动力时域数值模拟. 哈尔滨工程大学博士学位论文[D],2010.
[14] Liu D. M., Lin P. Z., A numerical study of three-dimensional liquid sloshing in tanks[J]. Comput.Phys.2008, 227(8), 3921-3939.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}