分离流动诱发的失速颤振和锁频现象研究

李国俊 1, 白俊强 1, 唐长红 1, 李宇飞 1, 刘南 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 97-103.

PDF(2490 KB)
PDF(2490 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (19) : 97-103.
论文

分离流动诱发的失速颤振和锁频现象研究

  • 李国俊 1, 白俊强 1, 唐长红 1, 李宇飞 1, 刘南 2
作者信息 +

Separation flow induced stall flutter and frequency locking phenomena

  • LI Guojun1,BAI Junqiang1,TANG Changhong1,LI Yufei1,LIU Nan2
Author information +
文章历史 +

摘要

采用非定常雷诺平均N-S方程(Unsteady Reynold Averaged Navier-Stockes, URANS)模拟失速颤振中的非定常气动力,通过耦合结构运动方程,建立时域气动弹性分析方法,其中结构运动方程采用基于预估-校正技术的四阶隐式Adams线性多步法进行时域推进求解。首先对动态失速气动力响应和锁频区域的预测精度进行验证,确保求解器适用于模拟失速颤振。其次,采用该气动弹性分析方法对NACA23012翼型的颤振边界进行数值模拟,结果表明,本文预测得到的颤振速度边界和实验结果吻合较好。通过对失速颤振中的结构运动响应和流动特性进行分析,发现在失速颤振中前缘漩涡的产生和尾涡脱落是一种能量转换和注入机制,用以维持翼型的等幅振荡;同时失速颤振中出现的锁频现象是导致翼型在初始攻角为15°、16°和17°时颤振频率突然降低的主要原因。

Abstract

The unsteady Reynold averaged Navier-Stockes (URANS) equation was adopted to simulate unsteady aerodynamic force in stall flutter.Coupled with a structure’s dynamic equation, the time domain aero-elastic analysis method was established.The structure’s dynamic equation was solved in time domain using the fourth order implicit Adams linear multi-step method based on the prediction-correction technique.Firstly, the aerodynamic response of dynamic stall and the prediction accuracy of frequency locking region were verified to ensure the CFD solver being suitable to stall flutter simulation.Then, this aero-elastic analysis method was used to simulate the flutter boundary of NACA23012 airfoil.The results showed that the flutter velocity boundary predicted with the proposed method agrees well with the test results.Through analyzing structural motion responses and flow characteristics in stall flutter, it was found that the generation of leading edge vortices and wake shedding in stall flutter is an energy conversion and an injection mechanism to keep the constant amplitude oscillation of the airfoil; meanwhile, the frequency locking phenomenon occurring in stall flutter is the main reason to cause flutter frequencies abruptly dropping when the initial attack angle are 15°, 16°and 17°, respectively.

关键词

失速颤振 / 锁频 / 动态失速 / 漩涡 / 能量

Key words

stall flutter / lock-in / dynamic stall / vortex / energy

引用本文

导出引用
李国俊 1, 白俊强 1, 唐长红 1, 李宇飞 1, 刘南 2. 分离流动诱发的失速颤振和锁频现象研究[J]. 振动与冲击, 2018, 37(19): 97-103
LI Guojun1,BAI Junqiang1,TANG Changhong1,LI Yufei1,LIU Nan2. Separation flow induced stall flutter and frequency locking phenomena[J]. Journal of Vibration and Shock, 2018, 37(19): 97-103

参考文献

[1] Li Jing. Experimental investigation of the low speed stall flutter of an airfoil[D]. Manchester: The University of Manchester, 2008.
[2] Dowell H E, Robert Clark, David Cox. A modern course in aeroelasticity[M]. U.S.: Springer, 2004:194-206.
[3] Jones W P. Aerofoil oscillations at high mean incidences[R]. R. & M. No.2654(11,502), London: Her Majesty's Stationery Office, 1953.
[4] McCroskey W J, Philippe J J. Unsteady viscous flow on oscillating airfoils[J]. AIAA Journal, 1975, 13(1): 71-79.
[5] 金琰,袁新,申炳録. 机翼大攻角下失速颤振的气动弹性研究[J]. 工程热物理学报, 2002,23(5): 573-575.
JIN Yan, YUAN Xin, SHIN Byeong-Rog. Aeroelastic analysis of an airfoil's stall flutter at large mean incidence angle[J]. Journal of Engineering Thermophysics, 2002,23(5): 573-575 (in Chinese).
[6] 李迺璐,穆安乐,Balas M J. 基于Floquet理论的旋转风机叶片动力失速气弹稳定性研究[J]. 振动与冲击, 2015, 34(24): 82-88.
LI Nai-lu, MU An-le, BALAS M J. Aeroelastic stability analysis on rotating stall blade of wind turbine based on floquet theory[J]. Journal of Vibration and Shock, 2015, 34(24): 82-88 (in Chinese).
[7] 任勇生, 刘廷瑞. 具有结构阻尼的复合材料薄壁梁的动力失速非线性颤振特性[J]. 振动与冲击, 2013, 32(18): 146-152.
REN Yong-sheng, LIU Ting-rui. Stall nonlinear flutter behavior of a thin-walled composite beam with structural damping[J]. Journal of Vibration and Shock, 2013, 32(18): 146-152(in Chinese).
[8] Grigorios Dimitriadis, Li Jing. Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wing tunnel[J]. AIAA Journal, 2009, 47(11):2577-2595.
[9] Razak N A, Thomas Andrianne, Grigorios Dimitriadis. Flutter and stall flutter of a rectangular wing in a wind tunnel[J]. AIAA Journal, 2011, 49(10): 2258-2271.
[10] Sacha Yabili, Smith M J, Grigorios Dimitriadis. Unsteady Navier-Stokes simulation of low-Reynolds stall flutter[R]. AIAA 2012-1706, Tennessee: AIAA, 2012.
[11] Damien Watrin, Grigorios Dimitriadis. Computational considerations for the prediction of stall flutter[R]. AIAA 2012-1706, Hawaii: AIAA, 2012.
[12] Besem F M, Kamrass J D, Thomas J P, et al. Vortex-induced virbration and frequency lock-in of an airfoil at high angles of attack[J]. Journal of Fluids Engineering, 2016, 138(1): 1-9.
[13] Deman Tang, Dowell E H. Experimental aerodynamic response for an oscillating airfoil in buffeting flow[J]. AIAA Journal, 2014, 52(6): 1170-1179.
[14] Zhu B, Lei J, Cao S. Numerical simulation of vortex shedding and lock-in characteristics for a thin cambered blade[J]. Journal of Fluids Engineering, 2007, 129(10):1297-1305.
[15] Young J, Lai J C S. Vortex lock-in phenomenon in the wake of a plunging airfoil[J]. AIAA Journal, 2007, 45(2): 485-490.
[16] Ashraf M A, Young J, Lai J C S. Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity[J]. AIAA Journal, 2012, 50(11): 2308-2324.
[17] Young J, Ashraf M A, Lai J C S. Numerical simulation of fully passive flapping foil power generation[J]. AIAA Journal, 2013, 51(11): 2727-2739.
[18] McAlister K W, Pucci S L, McCroskey W J. An experimental study of dynamic stall on advanced airfoil sections volume2. pressure and force data[R]. TR-82-A-8, California: NASA, 1982.
[19] 叶正寅, 张伟伟, 史爱明等. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010:171-173.
YE Zheng-yin, ZHANG Wei-wei, SHI Ai-ming. Fundamentals of fluid-structure coupling and its application[M]. Harbin: Harbin Institute of Technology Press, 2010:171-173 (in Chinese).
[20] Kiran Ramesh, Joseba Murua, Ashok Gopalarathnam. Limit-cycle oscillations in unsteady flows dominated by intermittent leading-edge vortex sheddingp[J]. Journal of Fluids and Structures, 2015, 55: 84-105.
[21] William Bollay, Charles D. Brown. Some Experimental Results on Wing Flutter[J]. Journal of the Aeronautical sciences, 1941, 8(8): 313-318.
[22] Alexander Mendelson. Effect of Aerodynamic Hysteresis on Critical Flutter Speed at Stall[C]. Washington: National Advisory Committee for Aeronautics, 1948: 1-24.
[23] Shantanu S. Bhat, Raghuraman N. Govardhan. Stall Flutter of NACA 0012 Airfoil at Low Reynolds Numbers[J]. Journal of Fluids and Structures, 2013, 41(1): 166-174.

PDF(2490 KB)

Accesses

Citation

Detail

段落导航
相关文章

/