研究了具有立方非线性项和外部激励项的二自由度非线性碰振系统的动力学特性。运用摄动方法推导出了碰振系统的局部亚谐Melnikov函数,并应用该Melnikov函数和数值方法确定了二自由度碰振系统稳定周期运动的存在条件。系统以频率 和激励力 等为分岔参数,仿真结果表明:系统的碰振运动经历了稳定的单碰和双碰周期运动,然后进入混沌状态,从而验证了Melnikov方法的有效性。此外,适当控制参数取值可以避免系统出现多周期和复杂的混沌运动,实现系统的稳态运动。
Abstract
The dynamic characteristics of a 2-DOF vibro-impact system with a cubic non-linear item under external excitation were investigated here. Firstly, the system’s local subharmonic Melnikov function was derived adopting the perturbation method. Then, Melnikov function and numerical methods were applied to determine the existence conditions of the system’s stable periodic motions. When the frequency and the excited force were taken as bifurcation parameters, the simulation results showed that the system performs a stable single-impact periodic motion and a double-impact periodic one, then enters a chaotic state, the validity of Melnikov method is verified; besides, appropriately controlling parameter values can avoid the system to have multi-period motion and complex chaotic one, and realize the stable motion of the system.
关键词
非线性碰振系统 /
Melnikov方法 /
亚谐轨道 /
混沌
{{custom_keyword}} /
Key words
nonlinear vibro-impact system /
Melnikov method /
subharmonic orbits /
chaotic motion
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S.L.T. de Souza, I.L. Caldas. Calculation of Lyapunov exponents in systems with impacts [J]. Chaos, Solitons & Fractals, 2004, 19(3): 569-579.
[2] J.C. Ji. Dynamics of a piecewise linear system subjected to a saturation constraint [J]. Journal of Sound and Vibration, 2004, 271(3-5): 905-920.
[3] Granados, S. J. Hogan, T.M. Seara. The Melnikov Method and Subharmonic Orbits in a Piecewise-Smooth System [J]. Journal of Applied Dynamical Systems, 2012(11): 801-830.
[4] H. Amano, H. Asahara, T. Kousaka. A Stability Analysis Method for Period-1 Solution in Two-Mass Impact Oscillator [C]. Nonlinear Dynamics of Electronic Systems: 22nd International Conference, NDES 2014, Albena, Bulgaria, July 4-6, 2014. Proceedings. Springer, 2014, 438: 37.
[5] W. Han, D.P. Jin, H.Y. Hu. Dynamics of an oblique-impact vibrating system of two degrees of freedom [J]. Journal of Sound and Vibration, 2004, 275(3-5): 795-822.
[6] Q. Li, Y. Chen, Y. Wei, et al. The analysis of the spectrum of Lyapunov exponents in a two-degree-of-freedom vibro-impact system [J]. International Journal of Non-Linear Mechanics, 2011, 46(1): 197-203.
[7] S.W. Shaw, R.H. Rand. The transition to chaos in a simple mechanical system [J]. International Journal of Non-Linear Mechanics, 1989, 24(1): 41-56.
[8] Z. Du, W. Zhang. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators [J]. Comput. Math. Appl., 2009(50): 445-458.
[9] W. Xu, J. Feng, H. Rong. Melnikov's method for a general nonlinear vibro-impact oscillator [J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(1-2): 418-426.
[10] F. Liang, M. Han. Limit cycles near generalized homoclinic and double homoclinic loops in piecewise smooth systems [J]. Chaos, Solitons & Fractals, 2012, 45(4): 454-464.
[11] 林路婵, 赵晓华. 一类2个自由度Hamilton系统的动力学性质[J]. 浙江师范大学学报, 2011,01:35-41.
LIN LU-chan, ZHAO XIAO-hua. Dynamic behaviors for a class of Hamiltonian system with two degree of freedom [J]. Journal of Zhejiang Normal University, 2011,01:35-41.
[12] 朱锦文. 两自由度参数激励系统的全局分岔分析[J]. 石家庄铁道大学学报, 2013,S1:167-170.
ZHU JIN-wen. Analysis of the global bifurcation for parametric excitation systems with two-degree of freedom [J]. Journal of ShiJia Zhuang TIEDAO University, 2013, S1:167-170.
[13] M. Sun, W. Zhang, J.E. Chen, et al. Subharmonic Melnikov method of four-dimensional non-autonomous systems and application to a rectangular thin plate [J]. Nonlinear Dynamics, 2015, 82(1-2): 643-662.
[14] 张思进,文桂林,王紧业等. 碰振准哈密顿系统局部亚谐轨道的Melnikov方法[J]. 振动工程学报,2016, 29(2): 214-219.
ZHANG SI-jin, WEN GUI-lin, WANG JIN-ye, et al. The Melnikov’s method for local-subharmonic orbits of a vibro-impact quasi-Hamiltonian system [J]. Journal of vibration engineering, 2016,29(2):214-219.
[15] S. Zhang, D. Ji, G. Wen, et al. Analysis of Global Subharmonic Orbits of a Vibro-Impact Quasi-Hamiltonian System with the Melnikov's Method [J]. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms, 2015, 22(1): 69-84.
[16] S.Wiggins. Introduction to applied nonlinear dynamical systems and chaos [M]. Spring-Verlag, New York, 1990.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}