基于声能量传递分析的空腔阻隔结构布置方案设计

牛胜福 1,张立军 1,赵英龙 1,孟德建 1,曹诚 2,陈阳 3,马扎根 2,权循宇 2

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 127-134.

PDF(1803 KB)
PDF(1803 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 127-134.
论文

基于声能量传递分析的空腔阻隔结构布置方案设计

  • 牛胜福 1 , 张立军 1 ,赵英龙 1 ,孟德建 1 ,曹诚 2 ,陈阳 3 ,马扎根 2 ,权循宇 2
作者信息 +

Optimal design of vehicle cavity fillers’ arrangement based on flow of acoustic power

  • NIU Shengfu 1   Zhang Lijun 1  ZHAO Yinglong 1  MENG Dejian 1  CAO Cheng 2  CHEN Yang 3  MA Zhagen 2  QUAN Xunyu 2
Author information +
文章历史 +

摘要

基于统计能量分析原理,建立整车SEA模型,并简化出汽车侧围空腔模型,进行激励源至舱内声腔的声能量传递分析。根据声能量传递分析得到的主要激励源、主要泄漏段以及主要传递路径三方面结果,制定阻隔结构的布置方案,并在整车模型中添加空腔阻隔结构进行降噪效果预测。结果表明,该方案使用较少的阻隔结构达到了甚至稍高于原厂方案的降噪效果。

Abstract

Based on the principles of the statistical energy analysis (SEA), a whole-body model for a vehicle was constructed here. From the model, a side-body model was built and simplified to analyze the flow of acoustic power from excitation sources to the acoustic cavity inside the car’s passenger compartment. According to the analysis results including main excitations, major leaking positions and main paths of acoustic power flow, three different arrangements of cavity fillers were made. Cavity fillers were put into the whole-body model, the noise attenuation effects of cavity fillers in three arrangements were predicted, respectively. Through comparing three results, the optimal arrangement was obtained. The study results showed that the optimal arrangement with less cavity fillers has a better denoising effect than the original arrangement does.

 

关键词

统计能量分析 / 声能量传递 / 阻隔结构 / 侧围模型

Key words

 SEA / flow of acoustic power / cavity fillers / side-body model

引用本文

导出引用
牛胜福 1,张立军 1,赵英龙 1,孟德建 1,曹诚 2,陈阳 3,马扎根 2,权循宇 2 . 基于声能量传递分析的空腔阻隔结构布置方案设计[J]. 振动与冲击, 2018, 37(2): 127-134
NIU Shengfu 1 Zhang Lijun 1 ZHAO Yinglong 1 MENG Dejian 1 CAO Cheng 2 CHEN Yang 3 MA Zhagen 2 QUAN Xunyu 2 . Optimal design of vehicle cavity fillers’ arrangement based on flow of acoustic power[J]. Journal of Vibration and Shock, 2018, 37(2): 127-134

参考文献

[1] 田绍军. 汽车车身侧围空腔填充技术及应用[J]. 装备制造技术,2011,10:181-183.
Tian Shaojun. The Technology of Cavity Filler on the Body Side of Automotive [J]. Equipment Manufacturing Technology, 2011, 10:181-183.
[2] 郭文志,李宏华,赵福全. 汽车车身侧围空腔膨胀胶填充技术[J]. 农业装备与车辆工程, 2012(3):42-45.
Guo Wenzhi, Li Honghua, Zhao Fuquan. Research on filling technology of expansion sealant for side wall cavity on a vehicle [J]. Agricultural Equipment & Vehicle Engineering, 2012, 2012(3):42-45.
[3] Yin G G,Oweimreen T S,Ladewig J. Varying the Polyurethane Foam Ratio for Better Acoustic Performance and Mass Savings[J].SAE,2011.
[4] Prasanth B,Wagh S,Hudson D.Evaluation of Acoustic Performance of Expandable Foam Baffles and Correlation with Incab Noise[J].SAE,2011.
[5] SAE. Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies[S].2010:10/2010.
[6] SAE. Laboratory Measurement of the Acoustical Performance of Body Cavity Filler Materials[S]. 2010: 10/2010.
[7] 周滗,金欢峰,靳晓雄. 轿车车内空腔声学模态[J]. 同济大学学报,2001,29(5):557-559.
Zhou Hong, Jin Huafeng, Jin Xiaoxiong. Acoustic Modality of Car Cavity [J]. Journal of Tongji University. 2001, 29(5): 557-559.
[8] Tony Banner, Michael Dambach and Paul Juras. 2002 Pontiac Montana Frequency Improvements Employing Structural Foam[J]. SAE Technical Paper Series, 2001.
[9] 贺银芝,杨志刚,王毅刚. 汽车车身密封对车内气动噪声影响的机理及试验研究[J]. 汽车工程,2012,34(8):692-695.
He Yinzhi, Yang Zhigang, Wang Yigang. The Mechanism and Equipment Study of the Effects of Car Body Sealings On Interior Aerodynamic Noise [J]. Automotive Engineering, 2012, 34(8): 692-695.
[10] Saeed Siavoshani. DRE NVH Contribution Analysis of Vehicle Cavity Fillers --NVH Target Setting Process[J]. SAE Technical Paper Series, 2009.
[11] 宋继强. 商用车驾驶室内中高频噪声的分析预测与控制[D]. 吉林:吉林大学,2010.
Song Jiqiang. Analysis Prediction and Control of the Mid-High Frequency Noises For Commercial Vehicle Cab [D]. Jilin, Jilin University, 2010.
[12] 朱磊. 轿车车内噪声控制的统计能量分析法
Li Hao. Prediction and Analysis On Passenger Car’s Interior Noise Using Statistical Energy Analysis Method [D]. Jilin, Jilin University, 2008.
[13] 齐海东,张俊华,曹莹. 空腔密封产品在汽车车身中的应用[J]. 粘接,2013,34(9):42-46.
Qi Donghai, Zhang Junhua, Caoying. The Application of Cavity Sealing Products in Car Body [J]. Adhesion in China, 2013, 34(9): 42-46.
[14] 靳晓雄, 张立军. 汽车噪声的预测与控制[M]. 同济大学出版社, 2004.
Jin Xiaoxiong, Zhang Lijun. Prediction and Control of Vehicle Noise [M]. Tongji University Press. 2004.
[15] 贺岩松, 张辉, 夏小均, 等. 基于 FE-SEA 混合法的车身板件降噪分析[J]. 振动与冲击, 2016, 35(23): 234-240.
He Yansong, Zhang Hui, Xiaxiaojun. Noise reduction analysis for car body panels on hybrid FE-SEA method [J]. Journal of Vibration and Shock, 2016, 35(23): 234-240.
[16] 陈鑫. 基于 SEA 方法的轿车车内噪声分析与控制研究 [D]. 长春: 吉林大学, 2008.
Chen Xin. Research on Analysis and Control of Car Interior Noise Based on SEA Method [D]. Changchun, Jilin University, 2008.
[17] 陈书明, 王登峰, 曹晓琳, 等. 车内噪声 FE-SEA 混合建模及分析方法[J]. 振动工程学报, 2010, 23(2): 140-144.
Chen Shuming, Wang Dengfeng, Cao Xiaolin. Hybrid FE-SEA Modeling and Analysis Method of Car Interior Noise [J]. Journal of Vibration Engineering, 2010, 23(2): 140-144.
[18] Dinsmore M L. SAE J1400[J]. SAE Technical Paper, 2005.
[19] 秦佑国, 王炳麟. 建筑声环境[M]. 清华大学出版社, 1999.
Qin Youguo, Wang Binglin. Architectural Acoustical Environments. Tsinghua University Press [M]. 1999.
 

PDF(1803 KB)

268

Accesses

0

Citation

Detail

段落导航
相关文章

/