液体晃动导致槽罐车受力情况变得复杂,从而会对前轮摆振系统动力学响应产生重要影响。以两轴小型槽罐车为例,分析液体晃动过程中液-固耦合作用机理,结合转向系统动力学建模分析,计入转向传动机构运动副间隙的影响,建立了十自由度槽罐车摆振系统动力学分析模型,并应用数值算例考察了液体晃动、车速、间隙等因素对车辆摆振响应的影响。分析结果表明,随着车速增加,液体晃动对摆振响应的影响表现出先抑制后加剧再抑制的现象,最后依据相关结论提出了减小槽罐车摆振的措施。
Abstract
Liquid sloshing makes force-bearing state of a tank truck be complicated, so liquid sloshing has important influences on dynamic responses of the tank truck’s front wheel shimmy system. Here, a two-axle tank truck was taken as an example, the liquid-solid interaction mechanism in liquid sloshing process was analyzed. Combining the dynamic modeling analysis of a steering mechanism, a 10-DOF dynamic model for the tank truck shimmy system was established considering the effect of clearance in the motion pair of the tank truck’s steering linkage mechanism. Using numerical analysis, the effects of liquid sloshing, vehicle speed and clearance on the vehicle shimmy response were investigated. The analysis showed that with increase in vehicle speed, the influence of liquid sloshing on the shimmy response firstly is inhibitory, then anabatic, and inhibitory again. Finally, some measures to reduce the tank truck’s shimmy were proposed according to the corresponding conclusions.
关键词
槽罐车 /
摆振 /
间隙 /
拉格朗日方程 /
液-固耦合
{{custom_keyword}} /
Key words
tank truck /
shimmy /
clearances /
Lagrange equation /
liquid-solid interaction
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Pacejka H B, Pacejka H B. Analysis of the shimmy phenomenon[J]. Proceedings of the Institution of Mechanical Engineers Automobile Division, 1965, 180(1965):251-268.
[2] 张琪昌, 李小涛, 田瑞兰. 汽车转向轮摆振的稳定性及分岔行为分析[J]. 振动与冲击, 2008, 27(1):84-88.
Zhang Q C, Xiao-Tao L I, Tian R L. Study on stability and bifurcation behavior of a car turning wheel shimmy[J]. Journal of Vibration & Shock, 2008.
[3] 陈铭年. 油罐车转弯横向稳定性的计算分析[J]. 汽车工程, 2001, 23(5):359-360.
Chen M N. Calculate Analysis of Transversal Stabilization for Turning of Oil Tank Truck [J]. Automotive Engineering, 2001, 23(5):359-360.
[4] 管迪华, 陈小悦. 解放CA-10油罐车悬置上结构模态参数与导向轮自激振动[J]. 汽车工程, 1985(2).
Guan Dihua, Chen Xiaoyue. The modal parameters of the suspension structure and the self excitation vibration of the steering wheel of FAW CA-10[J]. Automatic Engineering, 1985(2).
[5] 陈益苞, Subhash Rakhej, 上官文斌. 罐体横截面形状对液罐车侧倾稳定性影响分析[J]. 振动与冲击, 2016, 35(6):146-151.
Chen Yibao, Subhash R, Shangguan Wenbin. Modified design and safety analysis of tank cross section based on roll stability[J]. Journal of Vibration and Shock, 2016, 35(6):146-151.
[6] 杨秀建, 李耀平, 熊坚. 半挂汽车列车横向稳定性与失稳机理分析[J]. 汽车工程, 2011, 33(6):486-492.
Yang X, Li Y A. Analysis on the Lateral Stability and Instability Mechanism of Tractor-Semitrailer Combination[J]. Automotive Engineering, 2011, 33(6):486-492.
[7] Cheli F, D'Alessandro V, Premoli A, et al. Simulation of sloshing in tank trucks[J]. International Journal of Heavy Vehicle Systems, 2013, 20(1):1-16.
[8] 丁遂亮, 包光伟. 任意三维贮箱内液体晃动的模态分析及其等效力学模型[J]. 力学季刊, 2004, 25(1):62-68.
Ding S L, Bao G W. Modal Analysis and Equivalent Mechanical Model of Liquid Sloshing in Arbitrary 3D Container[J]. Chinese Quarterly of Mechanics, 2004, 25(1):62-68.
[9] 杨义勇,金德闻.机械系统动力学[M].北京:清华大学出版社,2009.
Yang Yiyong, Jin Dewen. Mechanical system dynamics[M]. Beijing: Tsinghua University press, 2009.
[10] Lu J W, Xin J Y, Vakakis A F, et al. Influences of system parameters on dynamic behavior of the vehicle shimmy system with clearance in steering linkage[J]. Journal of Vibration & Control, 2013, 21(2):359-370.
[11] Somieski G, Somieski G. Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods[J]. Aerospace Science & Technology, 1997, 1(8):545-555.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}