Lode相关断裂准则在6061-T6511H铝合金Taylor杆断裂预报中的应用

杨庆年1,陈孝珍1,肖新科1,李凡2,张伟3

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 142-149.

PDF(1406 KB)
PDF(1406 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 142-149.
论文

Lode相关断裂准则在6061-T6511H铝合金Taylor杆断裂预报中的应用

  • 杨庆年1,陈孝珍1,肖新科1,李凡2,张伟3
作者信息 +

Application of Lode dependent fracture criterion in predicting fracture of 6061-T6511H aluminium alloy Taylor rods

  •  YANG Qingnian,1 CHEN Xiaozhen,1 XIAO Xinke,1 LI Fan,2 ZHANG Wei 3
Author information +
文章历史 +

摘要

为校验Lode参数相关断裂准则的有效性,在一级轻气炮上开展了直径5.9 mm的6061-T6511H铝合金圆柱杆撞击刚性靶的Taylor试验,撞击速度范围为163.4-327.7 m/s,得到了镦粗和剪切开裂两种变形和断裂模式。为表征6061-T6511H铝合金的力学行为,开展了多应力状态、多温度下的材料性能测试,结合试验结果和有限元计算标定了修正的Johnson-Cook本构模型和修正的Johnson-Cook断裂准则及一种新近提出的Lode参数相关的断裂准则。最后,在ABAQUS/Explicit中建立了三维有限元模型,采用标定的Lode参数相关和无关的断裂准则开展了数值Taylor撞击试验。结果表明,Lode参数相关的断裂准则可对6061-T6511H铝合金Taylor杆的断裂行为给出合理预报,而Lode参数无关的断裂准则过高估计了材料的延性没能预报到相关断裂行为。

Abstract

To examine the effectiveness of Lode parameter dependent fracture criterion, Taylor impact tests of 6061-T6511H aluminum alloy cylinder rods with the diameter of 5.9 mm in the impact velocity range of 163.4 ~ 327.7 m/s were conducted with a one-stage light gas gun, two deformation and fracture modes including upsetting cracking and shear one were identified. Material performance tests under various stress states and temperatures were conducted in order to characterize the mechanical behavior of 6061-T6511H aluminum alloy. Based on test results and the corresponding FE numerical computing ones, the modified Johnson-Cook constitutive model, the modified Johnson-Cook fracture criterion and a newly developed Lode parameter dependent fracture criterion were calibrated. Then, 3D finite element models were built in ABAQUS/Explicit, Lode parameter dependent fracture criterion calibrated and other parameter independent fracture criterions calibrated were adopted, respectively to numerically simulate Taylor impact tests. Results showed that Lode parameter dependent fracture criterion can reasonably predict fracture behaviors of Taylor rods made with 6061-T6511H aluminum alloy, while Lode parameter independent fracture criterions over-estate the material ductility and can’t predict the relevant fracture behaviors.

 

关键词

冲击动力学 / Taylor撞击 / 断裂准则 / 罗德参数 / 数值模拟

Key words

 impact dynamics / Taylor impact / fracture criterion / Lode parameter / numerical simulation

引用本文

导出引用
杨庆年1,陈孝珍1,肖新科1,李凡2,张伟3. Lode相关断裂准则在6061-T6511H铝合金Taylor杆断裂预报中的应用[J]. 振动与冲击, 2018, 37(2): 142-149
YANG Qingnian,1 CHEN Xiaozhen,1 XIAO Xinke,1 LI Fan,2 ZHANG Wei 3. Application of Lode dependent fracture criterion in predicting fracture of 6061-T6511H aluminium alloy Taylor rods[J]. Journal of Vibration and Shock, 2018, 37(2): 142-149

参考文献

[1] S Dey. High-strength steel plates subjected to projectile impact-An experimental and numerical study[D]. Trondheim: Norwegian University of Science and Technology, 2004.
[2] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨:哈尔滨工业大学,2010年.
    XIAO Xinke. The ballistic resistance of double-layered metallic target and the deformation & fracture of taylor rod[D]. Harbin: Harbin Institute of Technology, 2010.
[3]  X Teng, T Wierzbicki, S Hiermaier, et al. Numerical Prediction of Fracture in the Taylor Test[J]. International Journal of Solids and Structures. 2005, 42:2929-2948.
[4]  X Teng, T Wierzbicki. Evaluation of Six Fracture Models in High Velocity Perforation[J]. Engineering Fracture Mechanics. 2006, 73:1653-1678.
[5]  X Xiao, W Zhang, G Wei, Z Mu, Z Guo. Experimental and numerical investigation on the deformation and failure behavior in the Taylor test[J]. Materials and Design. 2011, 32:2663-2674.
[6]  A Gilioli, A Manes, M Giglio, T Wierzbicki. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture mode[J].  International Journal of Impact Engineering. 2015, 76:207-220.
[7]  W Moćko, J Janiszewski, J Radziejewska, M Grązka. Analysis of deformation history and damage initiation for 6082-T6 aluminium alloy loaded at classic and symmetric Taylor impact test conditions[J]. International Journal of Impact Engineering. 2015, 75:203-13.
[8] JA Zukas, T Nicholas, HF Swift, et al. Impact Dynamics[M]. Wiley, 1982.
[9]  T Wierzbicki, Y Bao, YW Lee, et al. Calibration and Evaluation of Seven Fracture Models[J]. International Journal of Mechanical Sciences. 2005, 47:719-43.
[10]  I Barsoum, J Faleskog. Rupture mechanisms in combined tension and shear-experiments[J]. International Journal of Solids and Structures. 2007, 44:1768-86.
[11]  X Gao, T Zhang, M Hayden, C Roe. Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy[J]. International Journal of Plasticity. 2009, 25:2366-82.
[12]  Lian J, Sharaf M, Archie F, Muenstermann S. A hybrid approach for modelling of plasticity and failure behaviour of advanced high-strength steel sheets[J]. International Journal of Damage Mechanics. 2012, 22:188-218.
[13]  B Erice, MJ Pérez-Martín, F Gálvez. An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy[J]. International Journal of Impact Engineering. 2014, 69:11-24.
[14] Y Bai, T Wierzbicki. A comparative study of three groups of ductile fracture loci in the 3D space[J]. Engineering Fracture Mechanics. 2015, 135:147-67.
[15] Johnson GR, Cook WH. Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures[J]. Engineering Fracture Mechanics, 1985, 21:31-48.
[16]  Jr CE Anderson, IS Chocron, AE Nicholls. Damage Modeling for Taylor Impact Simulations[J]. Journal De Physique IV France. 2006, 134:331-7.
[17]  陈刚. 半穿甲战斗部弹体穿甲效应数值模拟与实验研究. 中国工程物理研究院, 博士学位论文. 2006年.
CHEN Gang. Numerical and experimental investigation on penetration effects of semi-armor piereing warhead[D]. Mianyang: China Academy of Engineering Physics, 2006.
[18] S Dey, T Børvik, OS Hopperstad, et al. The Effect of Target Strength on the Perforation of Steel Plates Using Three Different Projectile Nose Shapes[J]. International Journal of Impact Engineering. 2004, 30:1005-38.
[19]  A Kane, T Børvik, OS Hopperstad, M Langseth. Finite Element Analysis of Plugging Failure in Steel Plates Struck by Blunt Projectiles[J]. Journal of Applied Mechanics. 2009, 76:051302-1-11.
[20] Johnson GR, Cook WH. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]. Proceeding of the Seventh International Symposium on Ballistic. The Netherlands: The Hague, 1983. 541-547.
[21] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums[D]. Harbin: Harbin Institute of Technology, 2012.
[22] Y Lou, JW Yoon, H Huh. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J].  International Journal of Plasticity, 2014, 54:56-80.
[23] Y Bai, T Wierzbicki. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity. 2008, 24:1071-96.
[24] Y Bao, T Wierzbicki. A Comparative Study on Various Ductile Crack Formation Criteria[J]. Journal of Engineering Materials and Technology, 2004, 126:314-324.
[25] Y Bao , T Wierzbicki. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98.
[26] M Algarni, Y Bai, Y Choi. A study of Inconel 718 dependency on stress triaxiality and Lode angle in plastic deformation and ductile fracture[J]. Engineering Fracture Mechanics, 2015, 147:140-157.
[27] D R Lesuer, G J Kay, M M LeBlanc. Modeling large-strain, high rate deformation in metals[C]. Third Biennial Tri-Laboratory Engineering Conference on Modeling and Simulation, Pleasanton, CA. 2001.
[28] T Børvik, OS Hopperstad, T Berstad, et al. A Computational Model of Viscoplasticity and Ductile Damage for Impact and Penetration. European Journal of Mechanics-A/Solids. 2001, 20:685-712.

PDF(1406 KB)

Accesses

Citation

Detail

段落导航
相关文章

/