基于非线性能量俘获机制的直驱浮子式波浪能发电装置研究

肖晓龙1,肖龙飞1,2,李扬1

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 156-162.

PDF(2421 KB)
PDF(2421 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 156-162.
论文

基于非线性能量俘获机制的直驱浮子式波浪能发电装置研究

  • 肖晓龙1 ,肖龙飞1,2,李扬1
作者信息 +

A directly driven floater type wave energy converter with nonlinear power-take-off mechanism in irregular waves

  • XIAO Xiaolong1, XIAO Longfei1,2, LI Yang1
Author information +
文章历史 +

摘要

以直驱振荡浮子式波浪能发电装置为研究对象,探讨在应用线性和非线性能量俘获机制的情况下,装置在不规则波中的能量俘获情况。基于势流理论,针对垂荡运动,建立浮子与电机的耦合运动方程,应用四阶龙格库塔法数值求解,对非线性能量俘获机制中稳定平衡位置的影响进行研究,对线性和非线性装置在不同谱峰频率的不规则波中能量俘获功率的差异进行分析。结果表明:适当选取稳定平衡位置,非线性装置可以在低频时比线性装置俘获更多能量,且俘获能量频谱带宽更宽,更适应于实际海况中波浪能量俘获。

Abstract

The energy-capturing performance of a directly driven floater type wave energy converter (WEC) with linear power-take-off (PTO) mechanism and nonlinear one was studied. Based on the linear potential theory, considering heaving oscillation of the WEC, the motion equations for the floater-PTO coupled system was established and numerically solved using the 4th order Runge-Kutta method. The influences of the stable equilibrium position of the PTO mechanism on energy-capturing were parametrically studied, the difference among power captures of WECs with linear/nonlinear PTO mechanisms was analyzed. The results showed that a WEC with nonlinear PTO mechanism can capture more energy in low-frequency range through selecting a proper stable equilibrium position than a WEC with linear PTO mechanism can, and have a wider bandwidth of the captured energy spectrum; so the former is more applicable for capturing wave energy in actual ocean.  
 

关键词

波浪能发电装置 / 浮子 / 非线性能量俘获机制 / 稳定平衡位置 / 能量俘获功率

Key words

wave energy converter (WEC) / floater / nonlinear power-take-off (PTO) mechanism / stable equilibrium position / power capture

引用本文

导出引用
肖晓龙1,肖龙飞1,2,李扬1. 基于非线性能量俘获机制的直驱浮子式波浪能发电装置研究[J]. 振动与冲击, 2018, 37(2): 156-162
XIAO Xiaolong1, XIAO Longfei1,2, LI Yang1. A directly driven floater type wave energy converter with nonlinear power-take-off mechanism in irregular waves[J]. Journal of Vibration and Shock, 2018, 37(2): 156-162

参考文献

[1] 訚耀保.海洋波浪能综合利用[M].上海:上海科学技术出版社,2013.227-228,231-232.
Yin Yaobao. Principle and device of the ocean wave energy conversion generation[M]. Shanghai: Shanghai scientific & technical publishers,2013. 227-228, 231-232.
[2] Mueller M A. Electrical generators for direct drive wave energy converters[J]. IEE Proceedings-generation, transmission and distribution, 2002, 149(4): 446-456.
[3] Eriksson M, Isberg J, Leijon M. Hydrodynamic modelling of a direct drive wave energy converter[J].International Journal of Engineering Science, 2005, 43(17): 1377-1387.
[4] Elwood D, Yim S C, Prudell J, et al. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off[J]. Renewable Energy, 2010, 35(2): 348-354.
[5] Lejerskog E, Boström C, Hai L, et al. Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site[J]. Renewable Energy, 2015, 77: 9-14.
[6] Falnes J. Ocean waves and oscillating systems: linear interactions including wave-energy extraction[M]. London: Cambridge university press, 2002.45-46, 173.
[7] Mann B P, Owens B A. Investigations of a nonlinear energy harvester with a bistable potential well[J]. Journal of Sound and Vibration, 2010, 329(9): 1215-1226.
[8] Harne R L, Schoemaker M E, Dussault B E, et al. Wave heave energy conversion using modular multistability[J]. Applied Energy, 2014, 130: 148-156.
[9] Preumont A. Mechatronics: dynamics of electromechanical and piezoelectric systems[M]. Springer Science & Business Media, 2006.87-89.
[10] Scruggs J, Jacob P. Harvesting ocean wave energy[J]. Science, 2009, 323(5918): 1176-1178.
[11] 覃 岭,吴必军.复杂圆柱型波能装置振动特性研究[J].振动与击,2010,29(4):188-192.
Qin Ling, Wu Bijun. Oscillating property of a complex cylinder as a wave energy conversion device. Journal of vibration and shock, 2010, 29(4): 188-192.
[12] Vicente P C, Falcão A F O, Justino P A P. Nonlinear dynamics of a tightly moored point-absorber wave energy converter[J]. Ocean Engineering, 2013, 59: 20-36.
[13] L. Tang, Y. Yang, C.K. Soh. Toward broadband vibration-based energy harvesting, J. Intell. Mater. Syst. Struct. 21(18) (2010) 1867-1897.
[14] 张显涛. 振荡浮体式波能发电装置的水动力研究[D].上海交通大学,2015, pp. 55-57.
X. Zhang, Hydrodynamic Performance Study of an Oscillating-body Wave Energy Converter, Dissertation, Shanghai Jiao Tong University, Shanghai, 2015, pp. 55-57.
[15] 肖龙飞,杨建民,范模,彭涛. 160kDWT FPSO在极浅水中运动安全性研究[J]. 船舶力学,2006,01:7-14.
Xiao L F, Yang J, Fan M, et al. Research on motions and safety performance of a 160kDWT FPSO in ultra-shallow water[J]. Chuanbo Lixue(Journal of Ship Mechanics), 2006, 10(1): 7-14.

PDF(2421 KB)

Accesses

Citation

Detail

段落导航
相关文章

/