距离依赖的声速场反演与运动声源的跟踪定位

戴淼,李亚安

振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 17-23.

PDF(1671 KB)
PDF(1671 KB)
振动与冲击 ›› 2018, Vol. 37 ›› Issue (2) : 17-23.
论文

距离依赖的声速场反演与运动声源的跟踪定位

  • 戴淼 ,李亚安
作者信息 +

Inversion of distance-dependent sound speed fields and tracking & positioning moving sound sources

  • DAI Miao  LI Ya-an
Author information +
文章历史 +

摘要

借助运动声源位置的时变性,利用具有时空变化特性的声速剖面在一定条件下可近似建模为经验正交函数系数随时间/距离演化的特点,提出一种运动声源参数与声速场参数联合估计的方法,解决距离依赖浅海海域快变声速场反演问题。该方法采用扩展卡尔曼滤波和集合卡尔曼滤波算法在重构真实声速场的同时对运动声源进行跟踪定位。仿真结果和实测数据验证了算法的有效性,并对两种非线性算法进行了对比。研究表明:集合卡尔曼滤波表现出较优越的估计性能,即使在接收阵元数目减少的局限条件下,仍然能够很好的估计出移动声源的位置和声速参数在时间/距离维度上的演化轨迹。该方法对研究动态海洋参数反演和观测系统的布设具有一定的参考意义。

Abstract

With the help of the time-varying feature of moving sound course’s position, according to the fact that sound speed profiles with spatio-temporal variation features can be modeled approximatively as empirical orthogonal functions whose coefficients evolve with time/distance under certain conditions, a method for jointly estimating moving sound source’s parameters and sound speed field’s parameters was proposed to solve the inversion problem of distance-dependent fast-changing sound speed fields in shallow sea environment. With this method, the extended Kalman filtering and the ensemble Kalman filtering algorithms were used to reconstruct a real sound speed field, track and position a moving sound source simultaneously. The effectiveness of the two algorithms was verified with comparing simulation results and test data. The two nonlinear algorithms were also compared. The results showed that the ensemble Kalman filtering algorithm has a better estimation ability; even under a limited condition that the number of receiving array elements is reduced, it can estimate the moving sound source position and sound speed parameters’ evolution trajectories in time/distance domain. This proposed method provided a reference for studying inversion of dynamic ocean parameters and laying observing systems under sea water.
 

关键词

声速剖面 / 经验正交函数 / 运动声源 / 非线性滤波

Key words

sound speed profile / empirical orthogonal function / moving sound source / nonlinear filtering

引用本文

导出引用
戴淼,李亚安 . 距离依赖的声速场反演与运动声源的跟踪定位[J]. 振动与冲击, 2018, 37(2): 17-23
DAI Miao LI Ya-an . Inversion of distance-dependent sound speed fields and tracking & positioning moving sound sources[J]. Journal of Vibration and Shock, 2018, 37(2): 17-23

参考文献

[1] Chiu L Y S, Lin Y T, Chen C F, et al. Focused sound from three-dimensional sound propagation effects over a submarine canyon [J]. J. Acoust. Soc. Am., 2011, 129(6): 260-266.
[2] LeBlanc L R, Middleton F H. An underwater acoustic sound velocity data model [J]. J. Acoust. Soc. Am., 1980, 67(6): 2055-2062.
[3]何 利,李整林,彭朝晖,等. 南海北部海水声速剖面声学反演[J]. 中国科学:物理学 力学 天文学, 2011, 41(1): 49-57.
HE L, LI Zheng-lin, PENG Chao-hui, et al. Inversion for sound speed profiles in the northern of South China Sea [J]. Scientia Sinica Pysica,Mechanica & Astronomica, 2011, 41(1): 49-57.
[4]李 佳,杨坤德,雷 波,等. 印度洋中北部声速剖面结构的时空变化及其物理机理研究[J] . 物理学报, 2012, 61(8): 282-264.
LI Jia, YANG Kun-de, LEI Bo, et al. Research on the temporal-spatial distributions and the physical mechanisms for the sound speed profiles in north-central Indian Ocean [J]. Acta Physica Sinica, 2012, 61(8): 282-264.
[5] Yardim C, Michalopoulou Z-H, Gerstoft P.  An overview of sequential Bayesian filtering in ocean acoustics [J]. IEEE J. Ocean Eng., 2011, 36(1): 71-89.
[6] Culver R L, Hodgkiss W S. Comparison of Kalman and least squares filters for locating autonomous very low frequency acoustic sensors [J]. IEEE J. Ocean. Eng.,1988, 13(4) :282-290.
[7] Candy J V, Sullivan E J. Model-based environment inversion: A shallow water ocean application [J]. J. Acoust. Soc. Am.,1995, 98(3): 1446-1454.
[8] Yardim C, Gerstoft P, Hodgkiss W S. Tracking of geoacoustic parameters using Kalman and particle filters [J]. J. Acoust. Soc. Am.,2009, 125(2): 746-760.
[9] Carrière O, Hermand J P, Le Gac J C, et al. Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment [J]. J. Mar. Syst., 2009, 78: 382-392.
[10] Carrière O, Hermand J P, Candy J V. Inversion for time-evolving sound-speed field in a shallow ocean by ensemble Kalman filtering [J]. IEEE. J. Ocean. Eng.,2009, 34(4): 586-602. [11] Li J L, Zhou H. Tracking of time-evolving sound speed profiles in shallow water using an ensemble Kalman-particle filter [J]. J. Acoust. Soc. Am., 2013, 133(3): 1377-1386.
[12] Pekeris C L. Theory of propagation of explosive sound in shallow water [J]. Geologi11cal Society of America Memoris, 1948, 27: 1-116.
[13] Evans R B. A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom [J]. J. Acoust. Soc. Amer.,1983, 74(1): 188-195. [14] Porter A D, Reiss E L. Extension of the method of normal modes to sound propagation in an almost-stratified medium [J]. J. Acoust. Soc. Amer., 1965, 37(1): 19-27
[15] Dahl P, Zhang R H, Miller J, et al. Overview of results from the Asian Seas International Acoustics Experiment in the East China Sea [J]. IEEE J. Oceanic Eng.,2004, 29(4): 920-928
[16] Becker K M, Frisk G V. The impact of water column variability on horizontal wave number estimation and mode based geoacoustic inversion results [J]. J. Acoust. Soc. Amer.,2008, 123(2) : 658-666
[17] Porter M B. The KRAKEN normal mode program [C]. Technical Report, SACLANT Undersea Research Center, La Spezia, Italy, 1991.
[18] Luo X, Moroz I M. Ensemble Kalman filter with the unscented transform [J]. Physica D: Nonlinear Phenomena, 2009, 238(5): 549-562.
 

PDF(1671 KB)

Accesses

Citation

Detail

段落导航
相关文章

/