为了对缠绕式多点提升系统变形失谐时动力学响应特性进行研究,建立一种考虑卷筒缠绕半径误差的多点提升系统纵向振动模型,采用瑞利法对钢丝绳质量进行处理,同时将钢丝绳等效为刚度随绳长变化且具有一定阻尼的粘弹性体,然后应用Lagrange方程建立系统的振动方程。运用Matlab中ode45函数对转换后的一阶线性微分方程进行求解,计算结果表明:对于提升高度为43m、卷筒缠绕半径误差为1mm的实验提升系统,变形失谐情况下钢丝绳纵向运动加速度呈四段波动变化且位于0-1.5m/s2内波动,且提升钢丝绳最终绳长差为3.6mm,张力差达到657N。同时采用软件进行仿真对比,发现仿真提升容器速度、加速度变化曲线和数值计算变化曲线基本吻合;仿真进一步表明:钢丝绳之间动张力差在绳长差为3.0mm和4.2mm时达到了平均张力的5%和10%,说明由于卷筒缠绕误差带来的变形失谐对张力差会造成显著的影响。研究结果对于设计和制造超深井缠绕式多点提升机卷筒和控制钢丝绳变形失谐量有重要理论和应用参考价值。
Abstract
To study dynamic response characteristics of a multi-point winding hoisting system under the condition of discordance among wire ropes, a longitudinal vibration model for the multi-point hoisting system considering winding radius error of its drum was established. Rayleigh method was used to deal with the mass of the wire rope. The rope was equivalent to a viscoelastic body with a certain damping and stiffness varying with the rope’s length. The vibration equation of the system was built with Lagrange equation. Then the first order linear differential equation converted from the vibration equation was solved with the ode45 subroutine of MATLAB. The calculation results showed that for a tested hoisting system with the lifting height of 43m and the rope winding error of 1mm, the wire ropes' longitudinal vibration acceleration has four fluctuating stages within a range of 0-1.5m/s2, the final length difference and tension difference of hoisting ropes are 3.6mm and 657 Newton, respectively. The computing software was applied to do simulation and comparison. It was shown that the simulated rope’s hoisting velocity and acceleration versus time curves match those of the above calculation with MATLAB well; the dynamic tension differences among ropes reach 5% and 10% of the average tension with the rope length differences of 3.0mm and 4.2mm, respectively; the discordance among wire ropes caused by the drum’s winding radius error has a large influence on tension difference. The study results provided a theoretical basis and a reference for design of drum and control of discordance among wire ropes in multi-point winding hoisting systems.
关键词
多点提升 /
不同步 /
振动方程 /
张力差
{{custom_keyword}} /
Key words
multi-point hoisting /
discordance /
vibration equation /
difference of tension
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 戴紫孔.深井提升技术初探[J].中国有色建设, 2012, 41(3):59-62.
DAI Zi-kong. Discussion of deep shaft hoist technique[J]. China mine engineering, 2012, 41(3):59-62.
[2] Kaczmarczyk S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part 1: Mathematical model[J]. Journal of Sound & Vibration, 2003, 262(2):219-244.
[3] Kaczmarczyk S, Ostachowicz W. Transient vibration phenomena in deep mine hoisting cables. Part 2: Numerical simulation of the dynamic response[J]. Journal of Sound & Vibration, 2003, 262(2):245-289.
[4] 邵杏国. 吊盘稳车机构非光滑动力学行为及调平控制策略研究[D].中国矿业大学,2012.
SHAO Xing-guo. Non-smooth Dynamics Behavior and Auto-leveling Control for Sinking Winch Mechanism[D]. China University of Mining and Technology,2012.
[5] 吴仁愿, 曹国华, 岳岭. 曳引电梯提升动力学建模及仿真研究[J]. 制造业自动化,2015,37(4):80-83.
WU Ren-yuan, CAO Guo-hua, YUE Ling. Dynamic modeling and simulation of tractional elevator[J]. Manufacturing Automation, 2015, 37(4):80-83.
[6] 严世榕,闻邦椿.下放容器时提升钢丝绳的动力学仿真 [J].煤炭学报,1998,23(5):530~534.
YAN Shi-rong, WEN Bang-chun. Dynamic simulation of hoisting wire rope in the descending cycle of container[J]. Journal of China Coal Society,1998,23(5): 530~534.
[7] 寇保福,刘邱祖,刘春洋,梁钦. 矿井柔性提升系统运行过程中钢丝绳横向振动的特性研究[J]. 煤炭学报, 2015, 40(05): 1194-1198.
KOU Bao-fu, LIU Qiu-zu, LIU Chun-yang, LIANG Qin. Characteristic research on the transverse vibrations of wire rope during the operation of mine flexible hoisting system[J]. Journal of China Coal Society,2015,10(05):1194-1198.
[8] 吴娟,寇子明,梁敏.摩擦提升系统钢丝绳横向动力学分析[J].振动与冲击,2016,35(2):184-188.
WU Juan,KOU Zi-ming,LIANG Min.Transverse dynamics analysis of rope in multi-rope friction hoisting system
[J].Journal of Vibration and Shock,2016,35(2):184-188.
[9] Andrew SE. Efficient Modeling of Extensible Cables and Pulley Systems in Adams [C]. In: Europe Adams Conference, London, 2002: 1-10.9.
[10] 王大刚. 钢丝的微动损伤行为及其微动疲劳寿命预测研究[D].中国矿业大学,2012.
WANG Da-gang. Study on Fretting Damage Behaviors and Fretting Fatigue Life Estimation of Steel Wires[D].China University of Mining and Technology,2012.
[11] 傅武军. 超高速电梯轿厢横向振动控制研究[D].上海交通大学,2007.
FU Wu-jun. Research on car lateral vibration suspensions for super high-speed elevators[D]. Shanghai Jiao Tong University, 2007.
[12] 张营章, 张顺心, 崔少杰,等. 基于ADAMS/Cable的起重机钢丝绳的仿真分析[J]. 制造业自动化, 2013, 35(13):10-12.
ZHANG Ying-zhang, ZHANG Shun-xin, CUI Shao-jie, Sun Chun-fu. Simulation analysis for the wire rope of the crane based on ADAMS/Cable[J].Manufacturing Automation, 2013, 35(13):10-12.
[13] 王生泽. 线性时变振动系统动力学方程的一类解法——区间状态转移矩阵逼近算法[J]. 中国纺织大学学报,1998,24(3):67-73.
WANG Sheng-ze. An Algorithm for the Dynamic Response of Linear Time-varying Vibration Systems-An Algorithm Based on Approximation of the State Transition Matrix in a Small Period of Time[J]. Journal of China Textile University,1998,24(3):67-73.
[14] 包继虎, 张鹏, 朱昌明. 变长度提升系统钢丝绳纵向振动特性[J].振动与冲击,2013,32(15):173-177.
BAO Ji-hu, ZHANG Peng, ZHU Chang-ming. Longitudinal vibration of rope hoisting systems with time-varing length[J].Journal of Vibration and Shock, 2013,32(15):173-177.
[15] Zhu W D, Ni J. Energetics and Stability of Translating Media with an Arbitrarily Varying Length[J]. Journal of Vibration & Acoustics, 2000, 122(3):295-304.
[16] Kimura H, Iijima T, Matsuo S, et al. Vibration Analysis of Elevator Rope[J]. Journal of System Design & Dynamics, 2009, 3(3):420-428.
[17] Kimura H, Ito H, Nakagawa T. Vibration Analysis of Elevator Rope (2nd Report, Forced Vibration of Rope with Damping)[J]. Journal of System Design & Dynamics, 2008, 2(2):540-549.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}